46,728 research outputs found

    The low-noise optimisation method for gearbox in consideration of operating conditions

    Get PDF
    This paper presents a comprehensive procedure to calculate the steady dynamic response and the noise radiation generated from a stepping-down gearbox. In this process, the dynamic model of the cylindrical gear transmission system is built with the consideration of the time-varying mesh stiffness, gear errors and bearing supporting, while the data of dynamic bearing force is obtained through solving the model. Furthermore, taking the data of bearing force as the excitation, the gearbox vibrations and noise radiation are calculated by numerical simulation, and then the time history of node dynamic response, noise spectrum and resonance frequency range of the gearbox are obtained. Finally, the gearbox panel acoustic contribution at the resonance frequency range is calculated. Based on the conclusions from the gearbox panel acoustic contribution analyses and the mode shapes, two gearbox stiffness improving plans have been studied. By contrastive analysis of gearbox noise radiation, the effectiveness of the improving plans is confirmed. This study has provided useful theoretical guideline to the gearbox design

    Asymptotic normality of extreme value estimators on C[0,1]C[0,1]

    Get PDF
    Consider nn i.i.d. random elements on C[0,1]C[0,1]. We show that, under an appropriate strengthening of the domain of attraction condition, natural estimators of the extreme-value index, which is now a continuous function, and the normalizing functions have a Gaussian process as limiting distribution. A key tool is the weak convergence of a weighted tail empirical process, which makes it possible to obtain the results uniformly on [0,1][0,1]. Detailed examples are also presented.Comment: Published at http://dx.doi.org/10.1214/009053605000000831 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Ellsberg Paradox: Ambiguity And Complexity Aversions Compared

    Get PDF
    We present a simple model where preferences with complexity aversion, rather than ambiguity aversion, resolve the Ellsberg paradox. We test our theory using laboratory experiments where subjects choose among lotteries that “range” from a simple risky lottery, through risky but more complex lotteries, to one similar to Ellsberg’s ambiguity urn. Our model ranks lotteries according to their complexity and makes different—at times contrasting—predictions than most models of ambiguity in response to manipulations of prizes. The results support that complexity aversion preferences play an important and separate role from beliefs with ambiguity aversion in explaining behavior under uncertainty

    The 125 GeV Higgs and Electroweak Phase Transition Model Classes

    Full text link
    Recently, the ATLAS and CMS detectors have discovered a bosonic particle which, to a reasonable degree of statistical uncertainty, fits the profile of the Standard Model Higgs. One obvious implication is that models which predict a significant departure from Standard Model phenomenology, such as large exotic (e.g., invisible) Higgs decay or mixing with a hidden sector scalar, are already ruled out. This observation threatens the viability of electroweak baryogenesis, which favors, for example, a lighter Higgs and a Higgs coupled to or mixed with light scalars. To assess the broad impact of these constraints, we propose a scheme for classifying models of the electroweak phase transition and impose constraints on a class-by-class basis. We find that models, such as the MSSM, which rely on thermal loop effects are severely constrained by the measurement of a 125 GeV Higgs. Models which rely on tree-level effects from a light singlet are also restricted by invisible decay and mixing constraints. Moreover, we find that the parametric region favored by electroweak baryogenesis often coincides with an enhanced symmetry point with a distinctive phenomenological character. In particular, enhancements arising through an approximate continuous symmetry are phenomenologically disfavored, in contrast with enhancements from discrete symmetries. We also comment on the excess of diphoton events observed by ATLAS and CMS. We note that although Higgs portal models can accommodate both enhanced diphoton decay and a strongly first order electroweak phase transition, the former favors a negative Higgs portal coupling whereas the latter favors a positive one, and therefore these two constraints are at tension with one another.Comment: 35 pages, 7 figure

    General formalism for vibronic Hamiltonians in tetragonal symmetry and beyond

    Get PDF
    We derive general expansion formulas in vibrational coordinates for all bimodal Jahn–Teller and pseudo-Jahn–Teller Hamiltonians in tetragonal symmetry. Symmetry information of all the vibronic Hamiltonian matrix elements is fully carried by up to only 4 eigenvalues of symmetry operators. This problem-to-eigenvalue reduction enables us to handle thousands of vibronic problems in one work. The derived bimodal formulas can be easily extended to cover problems with one or more than two vibrational modes. They lay a solid foundation for future vibronic coupling studies of tetragonal systems. More importantly, the efficient derivation can be applied to handle (pseudo-)Jahn–Teller Hamiltonians for all problems with one principal symmetry axis
    • …
    corecore