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Abstract

We derive general expansion formulas in vibrational coordinates for all bimodal Jahn-Teller and

pseudo-Jahn-Teller Hamiltonians in tetragonal symmetry. Symmetry information of all the vibronic

Hamiltonian matrix elements is fully carried by up to only 4 eigenvalues of symmetry operators.

This problem-to-eigenvalue reduction enables us to handle thousands of vibronic problems in one

work. The derived bimodal formulas can be easily extended to cover problems with one or more

than two vibrational modes. They lay a solid foundation for future vibronic coupling studies of

tetragonal systems. More importantly, the efficient derivation can be applied to handle (pseudo-

)Jahn-Teller Hamiltonians for all problems with one principal symmetry axis.
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I. INTRODUCTION

Polyatomic systems with a principal symmetry axis ≥ 3-fold can exhibit non-accidental

orbital degeneracy in electronic states. The degeneracy reversely distorts the structure to a

lower symmetry and self-annihilates. This is the celebrated Jahn-Teller (JT) effect.1 It arises

from the vibronic coupling between degenerate electronic states and non-totally-symmetric

vibrations. Similar symmetry lowering also occurs for a non-degenerate state when its

coupling with other states by non-totally-symmetric vibrations is strong enough, i.e., the

pseudo-Jahn-Teller (pJT) effect.2 As the only source of spontaneous symmetry breaking

in polyatomic systems, the JT and pJT effects play essential roles in physical chemistry

and chemical physics; they are translated into a plain statement, “Nature tends to avoid

degeneracies by means of symmetry breaking.”3 They have been subjects of a plethora of

studies in the past eight decades.3–8

JT problems and the pJT problems that involve pseudo-degenerate electronic states are

intrinsically nonadiabatic problems. A (p)JT Hamiltonian is expanded around a high sym-

metry structure in a set of degenerate/pseudo-degenerate electronic states and a set of

relevant vibrational coordinates. A JT problem is generally labelled by Γ⊗ (γ1 + γ2 + · · · )

and a pJT problem by (Γ1 + Γ2)⊗ (γ1 + γ2 + · · · ), with Γ and γ being irreducible represen-

tations (irreps) of electronic states and vibrations, respectively. Diabatic electronic states

(diabats) are used to expand the Hamiltonian so that their matrix elements are smooth

functions of vibrational coordinates and can be Taylor-expanded.9 In a diabatic represen-

tation, the nuclear kinetic operator is decoupled from electronic degrees of freedom, and

the vibronic interaction is embedded in the variation of the diabatic electronic Hamilto-

nian matrix with respect to nuclear distortions.10–12 Correspondingly, in the text below, the

term “Hamiltonian” means electronic Hamiltonian in diabatic representation unless further

specified.

Traditionally, the Hamiltonian expansions in vibrational coordinates are truncated at

the second order.7 However, a growing number of studies have revealed the limitations of

the low-order Hamiltonians. For example, JT/pJT-active bending vibrations can bring nu-

clei close to each other and the resultant repulsion features positive anharmonicity.10,11,13,14

This is the so-called intramolecular collision.15 Also, when a JT/pJT problem involves bond

dissociation, the diabatic potentials are anharmonic and require higher order expansions.16
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High-order Hamiltonians are of concern to both theoreticians and experimentalists. They are

needed to interpret complicated vibronic spectra.17,18 They are also needed to fit the spec-

tra to obtain accurate empirical (p)JT parameters.19 Unfortunately, high-order expansion

formulas of (p)JT Hamiltonians are largely unknown. This ignorance forces us to fit accu-

rate numerical values of vibronic matrix elements using low-order polynomials, regrettably

losing accuracy. Pioneering works to derive high-order (p)JT Hamiltonians were dedicated

to textbook problems, e.g., the E ⊗ e problem in C3v symmetry, the T2 ⊗ t2 and T2 ⊗ e

problems in Td symmetry.10,11,20,21 These early case-specific attempts inspired us to develop

general formalism for (p)JT Hamiltonians to arbitrary order. We have recently derived gen-

eral formulas for 153 (E + A) ⊗ (e+ a) problems in trigonal symmetry22 and 92 problems

in tetrahedral and octahedral symmetries.23 These manually derived formulas feature the

following advantages: (1) they are analytical. Up to an arbitrary order they are correct, com-

plete, concise, and immune to numerical errors; (2) they clearly reveal connections between

vibronic problems. For instance, they guide us to adapt a simulation program designed for

one problem to another problem; (3) they allow us to circumvent conventional procedures

of using Clebsch-Gordan coefficients24,25 or totally symmetric projection operators to con-

struct Hamiltonians. The conventional methods are used in a case-by-case manner, which is

laborious at high orders. Also, their results are subject to linear redundancy and numerical

instability.

In this work, we manage to derive general Hamiltonian formulas for all bimodal (p)JT

problems in tetragonal symmetry. Unimodal problems are special cases of bimodal problems

with one set of vibrational coordinates set to 0. Problems with more than two modes can

be approximated as, e.g., Γ⊗ (γ1 + γ2 + γ3) ≈ Γ⊗ (γ1 + γ2) + Γ⊗ (γ1 + γ3) + Γ⊗ (γ2 + γ3),

or more accurately treated following the same procedure here. These formulas are desired

in studies of excitations and ionizations of systems in tetragonal symmetries,26–28 as well

as nonadiabatic dynamics/distortions around a tetragonal symmetric structure.29,30 This is

our first, practical motivation. The second motivation is theory-wise. Tetragonal symmetry

is the lowest axial symmetry (symmetry with one principal axis) that possesses all three

A-, B-, and E-type irreps. As discussed at the end of the paper, the derivation here can

be generalized to handle (p)JT problems in all axial symmetries, resulting in formalisms of

similar simplicity and conciseness.

Our derivation is based on the old idea of “descent in symmetry”, which was thoroughly
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discussed by Liehr more than half a century ago.31 By using this old method, we obtain a new

formalism that will benefit future vibornic studies. For instance, what are the tenth order

expansion formulas of the Eg ⊗ (eu + b2u) problem in D4h symmetry? Typical answers prior

to this work might be: “they can be obtained following the route in Liehr’s work”; “they

can be obtained using the Wigner-Eckart Theorem and the Clebsch-Gordan coefficients”.24,25

After this work, the answer is neat and clean:

H+g+g = ar,4k2I,2Kw
2Iρ|4k|+2K cos (4kφ) with 2I + |4k|+ 2K = 10;

H+g−g = br,4k+2
2I,2K w2Iρ|4k+2|+2Kei(4k+2)φ with 2I + |4k + 2|+ 2K = 10. (1)

For the twentieth order, we only need to change the summation of the powers to 20. The

arbitrariness of the expansion order is an improvement over previous derivations for (p)JT

problems,10–12,31 which gave expansions up to high yet finite orders. In short, we have relieved

future researchers in tetragonal (p)JT problems from deriving Hamiltonian formulas, and

our formulas are highly programmable. These are the main practical merits of this study.

Please note that the derivation of high order (p)JT Hamiltonian formulas is not a trivial

practice of knowledge in group theory and molecular symmetry. Incomplete or linearly

redundant expansions are not rare in literatures; some examples are given in Section IV of

Ref. 22. It requires a systematic and concise formalism to avoid these errors. In this work,

we organize all bimodal (p)JT Hamiltonian formulas in one type of symmetry (tetragonal)

into a few lookup tables. The resultant formalism is the most systematic and concise, and

hence free from any error.

II. SETTINGS, SYMBOLS, AND TERMINOLOGY

There is an arbitrariness in orienting the two components of the degenerate E irrep in

tetragonal symmetry. We set the two components of an E state and the two components of

an e vibrational mode so that they transform under Ĉ4 as

Ĉ4 |X〉 = |Y 〉 ; Ĉ4 |Y 〉 = − |X〉 ; Ĉ4ex = ey; Ĉ4ey = −ex. (2)

Such a setting is exemplified in Figure 1(a). The E components are transformed to be

eigenstates of Ĉ4:

(|+〉 |−〉) = (|X〉 |Y 〉) 1√
2

 1 1

i −i

 ; Ĉ4 |±〉 = ∓i |±〉 . (3)

4



x and y and their polar counterparts ρ and φ (x = ρ cosφ; y = ρ sinφ) are used as the

coordinates of the ex and ey component modes. z and w are used as coordinates for a and

b vibrations. α and β are used to differentiate states or modes of the same irrep (e.g., see

Figure 2). Henceforth, Γ is used to represent the nondegenerate A and B states when the

two are grouped together in discussion, and v for a and b modes’ coordinates.

eyex

ey

ey

ex

ex

(b) S4

(c) C4v

(d) D4

(f) D4h

(e) D2d

eux euy

ex ey

|X> |Y>

|X>

|X>

|Xu>

|X>

|Y>

|Y>

|Yu>

|Y>
C'2

C'2

C'2

eyex

(a) C4

|X> |Y>

σv

FIG. 1. Examples of E components and e components settings in 6 tetragonal point groups.

Both the root-branch and the modularized approaches are employed in the following

derivation. The essence of the root-branch approach is to first derive the expansion formu-

las (root formulas) for the lowest symmetry (C4) problems, and then to impose constraints

on the root formulas to obtain expansions for higher symmetry (C4v, C4h, etc.) problems
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(branch formulas).The essence of this approach is the “mathematical inheritance” that the

high symmetry problems obtain from the low symmetry problems.31 Please note the unidi-

rectional inheritance from low to high symmetry. If we derive low symmetry formulas from

high symmetry formulas, e.g., from D3h to C3v and C3h, the results are prone to errors.

Within each symmetry, we first handle interterm couplings between states from two term

symbols (i.e., pJT interaction). Formulas of intraterm couplings between states of the same

term symbol (i.e., JT interaction) are easily obtained from interterm results. The difference

between the two types of problems is illustrated in Figure 2. In the text below, symbols like

(E +B) ⊗ (e+ a) (E ⊗ (e+ a)) are reserved for interterm (intraterm) problems. Among

the seven tetragonal point groups: C4, S4, C4v, D4, D2d, C4h, and D4h, the first two are

isomorphic, and so are the third to the fifth. Therefore, we only need to derive Hamiltonian

formulas for the C4, C4v, C4h, and D4h symmetries.

Eα( )
1×2
, Eβ( )

1×2( )
H2×2

αα H2×2
αβ

H2×2
αβ( )

†
H2×2

ββ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Eα( )
2×1

Eβ( )
2×1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

FIG. 2. The matrix product form of a vibronic coupling Hamiltonian that involves two E term

symbols denoted by α and β. The green and blue diagonal blocks of the H matrix give the intraterm

couplings, and the red off-diagonal blocks give the interterm coupling.

III. DERIVATION AND RESULTS

A. C4 and S4 Problems.

The essence of the modularized approach in deriving (p)JT Hamiltonians is to consider

the electronic and the vibrational parts of a vibronic problem separately.23 We first consider

the electronic parts of interterm problems in C4 symmetry. We start with the (E + Γ)-type

problems, which have a Hamiltonian

Ĥ = (|+〉 〈Γ|+ |Γ〉 〈−|)H+Γ + hc. (4)

hc stands for the hermitian conjugate of the explicitly written part. The time-reversal

symmetry has been employed to derive H−Γ = H∗+Γ. An external magnetic field is not
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considered in this work and thus all problems are time-reversal-symmetric. For all problems

below, when their Hamiltonians are first written, the time-reversal symmetry has been

imposed to retain only unique matrix elements. The fundamental requirement of a (p)JT

Hamiltonian is its invariance with respect to all symmetry operators. Acting Ĉ4 on Eq. 4,

Ĉ4ĤĈ
−1
4 = ∓i (|+〉 〈Γ|+ |Γ〉 〈−|) Ĉ4H+Γ + hc. (5)

In this subsection, the top (bottom) symbols of ∓ and ± are taken when Γ = A (B).

Comparing Eqs. 4 and 5, we see that Ĉ4H+Γ = ±iH+Γ is needed for a Ĉ4-invariant Ĥ.

The Hamiltonian of the (E + E)-type problems reads

Ĥ = (|+α〉 〈+β|+ |−β〉 〈−α|)H+α+β + (|+α〉 〈−β|+ |+β〉 〈−α|)H+α−β + hc; (6)

Ĉ4ĤĈ
−1
4 = (|+α〉 〈+β|+ |−β〉 〈−α|)Ĉ4H+α+β − (|+α〉 〈−β|+ |+β〉 〈−α|)Ĉ4H+α−β + hc.(7)

Ĉ4ĤĈ
−1
4 = Ĥ requires Ĉ4H+α+β = H+α+β and Ĉ4H+α−β = −H+α−β . For the (Γ + Γ)-type

problems with two identical Γs,

Ĥ = (|Γα〉 〈Γβ|+ |Γβ〉 〈Γα|)Hr
ΓαΓβ

; Ĉ4ĤĈ
−1
4 = (|Γα〉 〈Γβ|+ |Γβ〉 〈Γα|)Ĉ4H

r
ΓαΓβ

. (8)

Ĉ4ĤĈ
−1
4 = Ĥ requires Ĉ4H

r
ΓαΓβ

= Hr
ΓαΓβ

. The superscript r indicates a real matrix element,

which results from the |Γ〉 states being real. Finally, for the (A+B)-type problems,

Ĥ = (|A〉 〈B|+ |B〉 〈A|)Hr
AB; Ĉ4ĤĈ

−1
4 = −(|A〉 〈B|+ |B〉 〈A|)Ĉ4H

r
AB. (9)

Ĉ4ĤĈ
−1
4 = Ĥ requires Ĉ4H

r
AB = −Hr

AB. The electronic parts of all interterm problems

in C4 symmetry have been considered. It is clear that to have the interterm Hamiltonians

symmetry-adapted, their independent matrix elements (Hijs) need to be Ĉ4-eigenfunctions,

with their eigenvalues (χC4s) summarized in Table 1. At this moment, the subscripts k, l,

p, q and all other σv- and I-related quantities in the table shall be ignored.

There are three types of intraterm problems in C4 symmetry. For the A- and B-type

problems, it is straightforward to see that the lone, real matrix element Hr
ΓΓ is Ĉ4-invariant

(χC4 = 1). For the E-type problems,

Ĥ = (|+〉 〈+|+ |−〉 〈−|)Hr
++ + |+〉 〈−|H+− + |−〉 〈+|H∗+−. (10)

Since |+〉 〈+| and |+〉 〈−| transform just like |+α〉 〈+β| and |+α〉 〈−β| under Ĉ4, Hr
++ is

a special case of H+α+β being real, and H+− shares the same χC4 with H+α−β . All the

intraterm χC4s are included in Table 1.

7



TABLE 1. The eigenvalues of symmetry operators of the independent elements in tetragonal

vibronic Hamiltonian matrices. The σ̂v-eigenvalues are given for the real and imaginary parts

of the matrix elements separately. The heading (A+A) / (B +B) means the matrix elements

underneath are relevant to the (A+A) and (B +B) problems, etc. k and ` stand for possible 1/2

subscripts for Γ, p and q stand for possible g/u subscripts.

(A+A)/(B +B)/A/B (A+B)

ij: χC4 , (χσv

Re, χ
σv

Im),χI
AkpA`q/BkpB`q: 1, ((−1)δk`+1, 0), (−1)

δpq+1

AkpB`q: −1, ((−1)δk`+1, 0), (−1)
δpq+1

ΓkpΓkp:1, (1, 0) , 1

(E +A) (E +B)

ij: χC4 , (χσv

Re, χ
σv

Im),χI +pAkq: i, ((−1)δk2 , (−1)δk1), (−1)
δpq+1

+pBkq: −i, ((−1)δk2 , (−1)δk1), (−1)
δpq+1

(E + E) E

ij: χC4 , (χσv

Re, χ
σv

Im), χI
+αp+βq: 1, (1,−1), (−1)

δpq+1
++:1, (1, 0) , 1

+αp−βq:−1, (1,−1), (−1)
δpq+1

+−:−1, (1,−1) , 1

The next step is to construct polynomials of vibrational coordinates that are Ĉ4-

eigenfunctions. Those polynomials are modules to expand the matrix elements with the

corresponding Ĉ4-eigenvalues. The coordinates transform under Ĉ4 as

Ĉ4f (z, w, ρ, φ) = f
(
z,−w, ρ, φ− π

2

)
. (11)

We use projection operators of the three irreps of the C4 point group to construct the

eigenfunctions. Let’s take the (e+ b) vibrational part as an example. A function of a b

coordinate and a set of e coordinates can in general be expanded as

f (w, ρ, φ) = am,n,Kw
mρ|n|+2Keinφ;m,K = 0, 1, 2, · · · ;n = · · · ,−1, 0, 1, · · · . (12)

am,n,K stands for expansion coefficient and is in general complex. Einstein’s convention

of summing over duplicate indices is followed in all expansion formulas. The |n| + 2K

power of ρ is a necessary constraint to ensure that the e coordinates part can be written

as a Taylor expansion in x and y. The full ranges of summation indices guarantee the

completeness of this expansion. Throughout this paper, the indices that appear within an

absolute value symbol take all integer values; the others take nonnegative integer values.
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Acting the projection operators of the A-, B-, and E+1-irreps on f gives Ĉ4-eigenfunctions

with eigenvalues 1, −1, and i (see details in Eqs. S1 to S3 in the Electronic Supporting

Information (ESI)):

f (1) (w, ρ, φ) = aI,2n,Kw
mod(n,2)+2Iρ|2n|+2Kei2nφ; (13)

f (−1) (w, ρ, φ) = aI,2n,Kw
mod(n,2)+2I+1ρ|2n|+2Kei2nφ; (14)

f (i) (w, ρ, φ) = aI,2n−1,Kw
mod(n,2)+2Iρ|2n−1|+2Kei(2n−1)φ. (15)

f (i)∗ (w, ρ, φ) belongs to the E−1-irrep and has the Ĉ4-eigenvalue −i. These (e+ b) eigen-

expansions are complete because: (1) the original expansion in Eq. 12 is complete and it can

be partitioned into contributions exclusively belonging to the four irreps; (2) the action of

the projection operator of each of the irreps does not discard any components that belong

to that irrep.

Following the same procedure, Ĉ4-eigen-expansions of all bimodal vibrational parts have

been derived and summarized in Tables 2 to 4. In these tables, “na” means “not applicable”,

i.e., there is no expansion in the corresponding vibrational coordinates that has the specific

Ĉ4-eigenvalue. For the same two reasons mentioned above, the expansions are all complete.

Because expansion formulas with the Ĉ4-eigenvalue −i are simply complex conjugates of

those with eigenvalue i, they are not given. In these tables, expansion coefficients are

complex unless they are denoted by superscripts r or i, which are real and stem from the

respective real and imaginary parts of their complex parents. It is important to allow

the coefficients to be complex in deriving vibronic Hamiltonians. As discussed in Section

IV.B of Ref. 22, erroneous formulas can be obtained for trigonal (p)JT problems if the

coefficients are assumed to be real without justification. Given the tabulated modules, we

can easily write down the Hamiltonian expansion formulas for any of the 36 (6 electronic

× 6 vibrational parts) interterm and 18 (3 × 6) intraterm problems. For instance, for the

(E + E) ⊗ (e+ b) problem, we simply select the (e+ b) formulas in Tables 2 and 3 for

H+α+β and H+α−β , respectively, matching the matrix elements’ Ĉ4-eigenvalues 1 and −1 in

Table 1. The modularized approach has simplified the derivation of C4 (p)JT Hamiltonians

to a matching game. We make no attempt to claim innovation in using this convenient

approach. Its central idea was mentioned, e.g., in Ref. 31 (see note 9 there).

For real matrix elements, e.g., Hr
AαAβ

and Hr
AB, one just takes the real parts of the

appropriate expansions. This is because all the real matrix elements have 1 or −1 Ĉ4-
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TABLE 2. Expansion formulas for Ĉ4-eigenfunctions of the bimodal vibrational coordinates with

eigenvalue 1.

Modes Expansion formulas

(a+ a) arI1,I2z
I1
α z

I2
β + iaiI3,I4z

I3
α z

I4
β

(a+ b) arI1,2Jz
I1w2J + iaiI2,2Jz

I2w2J

(b+ b)
ar2J1+1,2J2+1w

2J1+1
α w2J2+1

β + iai2J1+1,2J2+1w
2J1+1
α w2J2+1

β

+ar2J1,2J2w
2J1
α w2J2

β + iai2J1,2J2w
2J1
α w2J2

β

(e+ a)
a4m
I,2Kz

Iρ|4m|+2Kei4mφ = ρ|4m|+2K [ar,4mI1,2K
zI1 cos(4mφ)− ai,4mI2,2K

zI2 sin(4mφ)

+iar,4mI1,2K
zI1 sin(4mφ) + iai,4mI2,2K

zI2 cos(4mφ)]

(e+ b)
a2m

2I,2Kw
mod(m,2)+2Iρ|2m|+2Kei2mφ = wmod(m,2)+2Iρ|2m|+2K

[
ar,2m2I,2K cos(2mφ)

−ai,2m2I,2K sin(2mφ) + iar,2m2I,2K sin(2mφ) + iai,2m2I,2K cos(2mφ)
]

(e+ e)

am1,4n
2K1,2K2

ρ
|m1|+2K1
α ρ

|4n−m1|+2K2

β ei(m1φα+(4n−m1)φβ) = ρ
|m1|+2K1
α ρ

|4n−m1|+2K2

β[
(ar,m1,4n

2K1,2K2
cos(m1φα + (4n−m1)φβ)− ai,m1,4n

2K1,2K2
sin(m1φα + (4n−m1)φβ))

+i(ar,m1,4n
2K1,2K2

sin(m1φα + (4n−m1)φβ) + ai,m1,4n
2K1,2K2

cos(m1φα + (4n−m1)φβ))
]

eigenvalues, and they can be expanded only in basis sets of correspondingly A or B irrep.

Basis sets of A and B irreps can always be chosen real. The real and imaginary parts of

a function with 1 (−1) Ĉ4-eigenvalue are expanded in the same complete real A-irrep (B-

irrep) basis set but with real and imaginary coefficients, respectively. Therefore, the real

and imaginary parts are respectively Ĉ4-eigenfunctions with eigenvalue 1 (−1); when taking

only the real parts, the eigenvalue and the completeness are not lost.

The formulas in Tables 2 to 4 also apply to the 54 (36+18) Hamiltonians in S4 symmetry,

as long as the E and e settings follow Eq. 2, but with Ĉ4 being replaced by Ŝ4 (e.g.,

Figure 1(b)). These tables provide root formulas for the following derivation for higher

symmetries (the branches).

B. C4v, D4, and D2d Problems.

We select the σ̂v that conserves |X〉 and ex but flip |Y 〉 and ey as the representative

reflection operator of C4v symmetry (e.g., Figure 1(c)). It transforms the electronic states
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TABLE 3. Expansion formulas for Ĉ4-eigenfunctions of the bimodal vibrational coordinates with

eigenvalue −1.

Modes Expansion formulas

(a+ a) na

(a+ b) brI1,2J+1z
I1w2J+1 + ibiI2,2J+1z

I2w2J+1

(b+ b) br2J1+1,2J2
w2J1+1
α w2J2

β + ibi2J1+1,2J2
w2J1+1
α w2J2

β + br2J1,2J2+1w
2J1
α w2J2+1

β + ibi2J1,2J2+1w
2J1
α w2J2+1

β

(e+ a)
b4n+2
I,2K z

Iρ|4n+2|+2Kei(4n+2)φ = ρ|4n+2|+2K
[
br,4n+2
I1,2K

zI1 cos((4n+ 2)φ)− bi,4n+2
I2,2K

zI2 sin((4n+ 2)φ)

+ibr,4n+2
I1,2K

zI1 sin((4n+ 2)φ) + ibi,4n+2
I2,2K

zI2 cos((4n+ 2)φ)
]

(e+ b)
b2m2I,2Kw

mod(m,2)+2I+1ρ|2m|+2Kei2mφ = wmod(m,2)+2I+1ρ|2m|+2K
[
br,2m2I,2K cos(2mφ)− bi,2m2I,2K sin(2mφ)

+ibr,2m2I,2K sin(2mφ) + ibi,2m2I,2K cos(2mφ)
]

(e+ e)

bm1,4n+2
2K1,2K2

ρ
|m1|+2K1
α ρ

|4n+2−m1|+2K2

β ei(m1φα+(4n+2−m1)φβ) = ρ
|m1|+2K1
α ρ

|4n+2−m1|+2K2

β[
(br,m1,4n+2

2K1,2K2
cos(m1φα + (4n+ 2−m1)φβ)− bi,m1,4n+2

2K1,2K2
sin(m1φα + (4n+ 2−m1)φβ))

+i(br,m1,4n+2
2K1,2K2

sin(m1φα + (4n+ 2−m1)φβ) + bi,m1,4n+2
2K1,2K2

cos(m1φα + (4n+ 2−m1)φβ))
]

and the vibrational coordinates as

σ̂v (|+〉 , |−〉 , |Γ1〉 , |Γ2〉) = (|−〉 , |+〉 , |Γ1〉 ,− |Γ2〉) ; σ̂vf (ρ, φ, v1, v2) = f (ρ,−φ, v1,−v2) .

(16)

The subscripts 1 and 2 determine the sign of Γ states and v coordinates under the reflection.

Henceforth, the 1/2 subscripts are labelled by k and `. We group the (Ak + A`)-, (Ak +B`)-,

and (Bk +B`)-type interterm problems in deriving extra requirements on their Hamiltonian

matrix elements in C4v symmetry:

Ĥ = (|Γk〉 〈Γ`|+ |Γ`〉 〈Γk|)Hr
ΓkΓ`

; σ̂vĤσ̂
−1
v = (−1)δk`+1 (|Γk〉 〈Γ`|+ |Γ`〉 〈Γk|) σ̂vHr

ΓkΓ`
.(17)

σ̂vĤσ̂
−1
v = Ĥ requires σ̂vH

r
ΓkΓ`

= (−1)δk`+1Hr
ΓkΓ`

, where the Kronecker delta δk` concisely

expresses the σ̂v-eigenvalues of the |Γk〉 〈Γ`| dyad andHr
ΓkΓ`

. For the (E + Γk)-type problems,

Ĥ = (|+〉 〈Γk|+ |Γk〉 〈−|)H+Γk + hc; σ̂vĤσ̂
−1
v = (−1)δk2 (|−〉 〈Γk|+ |Γk〉 〈+|) σ̂vH+Γk + hc.

(18)
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TABLE 4. Expansion formulas for Ĉ4-eigenfunctions of the bimodal vibrational coordinates with

eigenvalue i.

Modes Expansion formulas

(γ + γ)† na

(e+ a)
c4n+1
I,2K z

Iρ|4n−1|+2Kei(4n−1)φ = ρ|4n−1|+2K
[
cr,4n−1
I1,2K

zI1 cos((4n− 1)φ)− ci,4n−1
I2,2K

zI2 sin((4n− 1)φ)
]

+iρ|4n−1|+2K
[
cr,4n−1
I1,2K

zI1 sin((4n− 1)φ) + ci,4n−1
I2,2K

zI2 cos((4n− 1)φ)
]

(e+ b)

c2n−1
2I,2Kw

mod(n,2)+2Iρ|2n−1|+2Kei(2n−1)φ

= wmod(n,2)+2Iρ|2n−1|+2K
[
cr,2n−1

2I,2K cos((2n− 1)φ)− ci,2n−1
2I,2K sin((2n− 1)φ)

]
+iwmod(n,2)+2Iρ|2n−1|+2K

[
cr,2n−1

2I,2K sin((2n− 1)φ) + ci,2n−1
2I,2K cos((2n− 1)φ)

]

(e+ e)

cm1,4n−1
2K1,2K2

ρ
|m1|+2K1
α ρ

|4n−1−m1|+2K2

β ei(m1φα+(4n−1−m1)φβ) = ρ
|m1|+2K1
α ρ

|4n−1−m1|+2K2

β[
(cr,m1,4n−1

2K1,2K2
cos(m1φα + (4n− 1−m1)φβ)− ci,m1,4n−1

2K1,2K2
sin(m1φα + (4n− 1−m1)φβ))

+i(cr,m1,4n−1
2K1,2K2

sin(m1φα + (4n− 1−m1)φβ) + ci,m1,4n−1
2K1,2K2

cos(m1φα + (4n− 1−m1)φβ))
]

† Including (a+ a), (b+ b), and (a+ b).

σ̂vĤσ̂
−1
v = Ĥ requires σ̂vH+Γk = (−1)δk2 H∗+Γk

. Considering the real and imaginary

parts of the matrix element separately, this requirement is equivalent to σ̂vRe (H+Γk) =

(−1)δk2 Re (H+Γk) and σ̂vIm (H+Γk) = (−1)δk1 Im (H+Γk).

For the (E + E)-type problems,

Ĥ = (|+α〉 〈+β|+ |−β〉 〈−α|)H+α+β + (|+α〉 〈−β|+ |+β〉 〈−α|)H+α−β + hc;

σ̂vĤσ̂
−1
v = (|−α〉 〈−β|+ |+β〉 〈+α|)σ̂vH+α+β + (|−α〉 〈+β|+ |−β〉 〈+α|)σ̂vH+α−β + hc. (19)

σ̂vĤσ̂
−1
v = Ĥ requires σ̂vH+α+β(+α−β) = H∗

+α+β(+α−β)
, i.e., σ̂vRe

(
H+α+β(+α−β)

)
=

Re
(
H+α+β(+α−β)

)
and σ̂vIm

(
H+α+β(+α−β)

)
= −Im

(
H+α+β(+α−β)

)
. All in all, there

are 4 additional symmetry requirements on the independent matrix elements of the 3 types

of interterm problems. The requirements of the real and imaginary parts of H+Γk , H+α+β ,

and H+α−β have a form of eigenequation. The σ̂v-eigenvalues for the real and imaginary

parts (χσvRes and χσvIms) of the matrix elements are summarized in Table 1. For a real Hr
ij, χ

σv
Im

is set to zero. The two types of intraterm problems are treated similarly. For the Γk-type

12



problems, Hr
ΓkΓk

has χσvRe = 1, and so does Hr
++ in the E-type problems. H+− shares the

same (χσvRe, χ
σv
Im) with H+α−β .

Given the formulas in Tables 2 and 3, we can use the σ̂v-odd and -even projection

operators, P̂σv ,o = Ê − σ̂v and P̂σv ,e = Ê + σ̂v, to construct all the expansions with(
χC4 , (χσvRe, χ

σv
Im)
)

= (±1, (±1,±1)). Here, Ê is the identity operator, and the sign selec-

tions in the three ± symbols are uncorrelated. One example is given here. The complete

f (−1) expansion of the (e+ b) vibrational part in C4 symmetry (Eq. 14) consists of B1 and

B2 contributions:

f (−1) = f
(−1)
B1 + f

(−1)
B2 = Re

(
f

(−1)
B1

)
+ iIm

(
f

(−1)
B1

)
+Re

(
f

(−1)
B2

)
+ iIm

(
f

(−1)
B2

)
. (20)

Acting P̂σv ,e and P̂σv ,o on the real and imaginary parts of f (−1) will extract the respective B1

and B2 contributions, giving an (e+ b) expansion with
(
χC4 , (χσvRe, χ

σv
Im)
)

= (−1, (1,−1)).

Again, the resultant expansion is complete because the original f (−1) is complete and the

projection operators fully retain the respective even and odd components. A more specific

example is given for the (e+ b2) expansion in ESI (Eqs. S4 to S7). The action of the

projection operators results in constraints on the summation indices for formulas in Tables 2

and 3. These constraints are summarized in Tables 5 and 6. They are minimum constraints,

in correspondence with the completeness of the formulas.

When δk1 = 1, δk2 must be 0, and vice versa. Therefore, the Hamiltonian matrix ele-

ments with χC4 = ±i in Table 1 have (χσvRe, χ
σv
Im) = (±1,∓1) in pairs. The requirement of

having the opposite signs in χσvRe and χσvIm is satisfied by all three expansions in Table 4.

Each of those expansions has a phase factor of the polar angle(s) of e coordinate(s), e.g.,

ei(m1φα+(4n−1−m1)φβ) for the (e+ e) formula. The phase factors are all eigenstates of the

angular momentum operator L̂z (z being the C4 axis) with eigenvalues 4n − 1 or 2n − 1.

It is well known that the action of σ̂v reverses their eigenvalues and converts them to their

complex conjugates, i.e., they all have (χσvRe, χ
σv
Im) = (1,−1). In the (e+ v) expansions, the

phase factors are multiplied by monomials of vMk , which flip their signs under σ̂v when k = 2

and M is odd. Such a sign-flipping gives (χσvRe, χ
σv
Im) = (−1, 1) for the products. Now it

is clear that all monomials in the expansions in Table 4 satisfy (χσvRe, χ
σv
Im) = (±1,∓1) in

pairs. If a monomial is multiplied by a real coefficient, its (χσvRe, χ
σv
Im) is invariant. If it is

multiplied by a purely imaginary coefficient, χσvRe and χσvIm are swapped. Therefore, to have

σ̂v-adapted expansions from Table 4, the coefficients there must be either real or purely

13



TABLE 5. Constraints on expansions in Table 2 to give the appropriate χσvRe and χσvIm. When

χσvIm = 0, only the real part of the corresponding entry in Table 2 should be considered.

Modes (1, (1, 0)) (1, (−1, 0)) (1, (1,−1))

(a1 + a1) nr† na na

(a1 + a2)‡ I2 even¶ I2 odd I2 even, I4 odd

(a2 + a2) I1, I2 ee or oo§ I1, I2 eo or oe£
I1, I2 ee or oo,

I3, I4 eo or oe

(a1 + b1), (a1 + b2) nr na na

(a2 + b1), (a2 + b2), I1 even I1 odd I1 even, I2 odd

(b1 + b1), (b2 + b2), nr na na

(b1 + b2) aee nz$ aoo nz$ aree, a
i
oo nz

(e+ a1), (e+ b1), cos nz# sin nz ar nz

(e+ a2) I1 even, I2 odd I1 odd, I2 even I1 even, I2 odd

(e+ b2)
cos nz if m even, sin nz if m even, ar nz if m even,

sin nz if m odd cos nz if m odd ai nz if m odd

(e+ e) cos nz sin nz ar nz

† “nr” means “no restriction”. ‡ For two modes whose irreps only differ in subscripts, α-subscripted

coordinates in Table 2 are for the first (a1 here) and β- for the second (a2 here) mode. ¶ I2 needs to be

even. § I1 and I2 need to be both even or both odd. £ When I1 is even, I2 must be odd, and vice versa. $

aee means a2J1,2J2 . aoo means a2J1+1,2J2+1. “nz” means only these coefficients are nonzero. # Only the

terms associated with cos factors are nonzero.

imaginary. The real/imaginary selections are translated to constraints that are summarized

in Table 7. Expansion formulas with
(
χC4 = −i, (χσvRe, χ

σv
Im)
)

are obtained by taking complex

conjugates of the counterparts with
(
χC4 = i, (χσvRe, χ

σv
Im)
)
. These constraints do not aban-

don any monomials in the complete expansions in Table 4. Only the necessary selections

of real and imaginary coefficients are taken. Therefore, these are minimum constraints and

the resultant σ̂v-eigen-expansions are complete.

With all the 7 tables, expansion formulas for any of the 225 (15 electronic × 15 vibrational

14



TABLE 6. Constraints on expansions in Table 3 to give the appropriate χσvRe and χσvIm. When

χσvIm = 0, only the real part of the corresponding entry in Table 3 should be considered.

Modes (−1, (1, 0)) (−1, (−1, 0)) (−1, (1,−1))

(a1 + b1) nr na na

(a1 + b2) na nr na

(a2 + b1) I1 even I1 odd I1 even, I2 odd

(a2 + b2) I1 odd I1 even I1 odd, I2 even

(b1 + b1) nr na na

(b1 + b2) boe nz beo nz broe, b
i
eo nz

(b2 + b2) na nr na

(e+ a1), (e+ b1) cos nz sin nz br nz

(e+ a2) I1 even, I2 odd I1 odd, I2 even I1 even, I2 odd

(e+ b2)
cos nz if m odd, sin nz if m odd, br nz if m odd,

sin nz if m even cos nz if m even bi nz if m even

(e+ e) cos nz sin nz br nz

TABLE 7. Constraints on expansions in Table 4 to give the appropriate χσvRe and χσvIm.

Modes (i, (1,−1)) (i, (−1, 1))

(e+ a1), (e+ b1) cr nz ci nz

(e+ a2) I1 even, I2 odd I1 odd, I2 even

(e+ b2) cr (ci) nz if n even (odd) cr (ci) nz if n odd (even)

(e+ e) cr nz ci nz

parts) interterm and 75 (5 × 15) intraterm vibronic problems in C4v symmetry are readily

obtained. The procedure of obtaining the (E + A2/B2) ⊗ (e+ b2) expansion formulas is

demonstrated here as examples. We first look for
(
χC4 , (χσvRe, χ

σv
Im)
)

for the matrix elements

of the electronic part in Table 1, (i, (−1, 1)) for H+A2 in the (E + A2) ⊗ (e+ b2) problem.

χC4 = i guides us to Table 4 to look for the expansion formula for the vibrational part, the

15



(e+ b) row in this case:

H+A = wmod(n,2)+2Iρ|2n−1|+2K
[
cr,2n−1

2I,2K cos (2n− 1)φ− ci,2n−1
2I,2K sin (2n− 1)φ

+icr,2n−1
2I,2K sin (2n− 1)φ+ ici,2n−1

2I,2K cos (2n− 1)φ
]
. (21)

Finally,
(
χC4 , (χσvRe, χ

σv
Im)
)

guide us to the (e+ b2)-(i, (−1, 1)) entry in Table 7. With the

constraints of “cr (ci) nz if n odd (even)”, Eq. 21 becomes

H+A2 = cr,4k+1
2I,2K w2I+1ρ|4k+1|+2Kei(4k+1)φ + ici,4k−1

2I,2K w
2Iρ|4k−1|+2Kei(4k−1)φ, (22)

where 2k and 2k + 1 are introduced to differentiate even and odd n. Since H+A2 and H+B2

only differ in χC4 (i vs. −i, see Table 1), the H+B2 expansion in the (E +B2) ⊗ (e+ b2)

problem is the complex conjugate of Eq. 22:

H+B2 = cr,4k−1
2I,2K w2I+1ρ|4k−1|+2Kei(4k−1)φ − ici,4k+1

2I,2K w
2Iρ|4k+1|+2Kei(4k+1)φ. (23)

Transforming into the real |X〉 and |Y 〉 states and cartesian x and y coordinates, and keeping

up to second order terms, we have

HXB2 =
√

2
(
ci,10,0y + cr,−1

0,0 wx
)

;HY B2 =
√

2
(
ci,10,0x+ cr,−1

0,0 wy
)
. (24)

They agree with the (E +B2)⊗ (e+ b2) block in Eq. 31 in Ref. 32.

All the C4v formulas are applicable to (p)JT problems in D4 and D2d symmetries, as long

as the E and e components transform as in Eq. 16, but with σv being replaced by C ′2 in the

respective symmetries (e.g., Figure 1(d) and (e)).

C. C4h Problems.

The inversion center is the additional symmetry element that raises C4 symmetry to C4h

symmetry. In C4h symmetry, there is no additional requirement on the E component states

and e component modes other than satisfying Eq. 2. The E and e components in this

symmetry shall hence have similar orientations as in Figure 1(a). All states and vibrational

modes are eigenstates of the inversion operator Î, with eigenvalues 1 or −1 determined by

their parities g or u. In polar coordinates of an e mode, the parity is associated to ρ, i.e.,

Îf (vg, vu, ρα,g, φα, ρβ,u, φβ) = f (vg,−vu, ρα,g, φα,−ρβ,u, φβ) . (25)
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To have an Î-invariant Hamiltonian, each matrix element Hij must have a parity that is the

product of the parities of states i and j, i.e., the (−1)δpq+1 Î-eigenvalues (χIs) in Table 1.

Henceforth, the g/u subscripts are labelled by p and q. The only constraint on the root

formulas in Table 2 to 4 to obtain expansions of the C4h problems is that the total powers

of u coordinates needs to be even (odd) for Hijs with χI = 1 (−1). This simple rule is

translated into constraints that are summarized in Tables S1 to S3 in ESI. These constraints

are obtained by applying the Î-odd (Ê − Î) and -even (Ê + Î) projection operators onto

the root formulas in Tables 2 to 4. The completeness of the root formulas and the fact

that the projection operators fully retain the components with the respective parities ensure

the completeness of the resultant expansions and the minimum nature of the constraints.

Expansion formulas with
(
χC4 = −i, χI

)
are obtained by taking complex conjugates of those

with
(
χC4 = i, χI

)
. The tabulated root formulas and constraints readily give Hamiltonian

expansions for all 441 (21 electronic × 21 vibronic parts) interterm and 126 (6×21) intraterm

problems in C4h symmetry.

D. D4h Problems.

The D4h symmetry is a composite of the C4h and the D4 (or D2d) symmetries. We do

not view it as a composite of the C4h and the C4v symmetries, although we could. This is

because in the D4h character table, the subscripts 1 and 2 of Γ indicate being Ĉ ′2-even and

-odd, instead of σ̂v-. Therefore, in the D4h derivation, the E and e components transform as

in Eq. 16 but with σ̂v being replaced by Ĉ ′2 (e.g., Figure 1(f)). In this composite symmetry,

each of the matrix elements Hij needs to have all four eigenvalues of the three symmetry

operators:
(
χC4 ,

(
χ
C′

2
Re, χ

C′
2

Im

)
, χI
)

. Note that (χσvRe, χ
σv
Im) have been replaced by

(
χ
C′

2
Re, χ

C′
2

Im

)
.

The expansion for Hij with
(
χC4 ,

(
χ
C′

2
Re, χ

C′
2

Im

)
, χI
)

simply adopts the corresponding χC4 root

formula with the combined
(
χC4 ,

(
χ
C′

2
Re, χ

C′
2

Im

))
and

(
χC4 , χI

)
constraints. The completeness

of the resultant formula is guaranteed by the completeness of the root formula and the

minimum nature of each set of the constraints.

Here we use the (Eg + A1u) ⊗ (eg + b2u) problem as an example to show how to obtain

Hamiltonian expansion inD4h symmetry. The (Eg + A1u)⊗(eg + b2u) problem is decomposed

into the (E + A1)⊗(e+ b2) problem in D4 symmetry and the (Eg + Au)⊗(eg + bu) problem

in C4h symmetry. There is one matrix element H+A for the (E + A) electronic part. From
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the (E + A) blocks in Tables 1, we know its
(
χC4 ,

(
χ
C′

2
Re, χ

C′
2

Im

)
, χI
)

= (i, (1,−1) ,−1). We

first get the (E + A)⊗ (e+ b) root expansion formula from Table 4:

H+A = wmod(n,2)+2Iρ|2n−1|+2K
[
cr,2n−1

2I,2K + ici,2n−1
2I,2K

]
ei(2n−1)φ. (26)

Imposing the (i, (1,−1)) constraints of “cr (ci) nz if n even (odd)” for (e+ b2) in Table 7,

the formula becomes

H+A1 = cr,4k−1
2I,2K w2Iρ|4k−1|+2Kei(4k−1)φ + ici,4k+1

2I,2K w
2I+1ρ|4k+1|+2Kei(4k+1)φ, (27)

where even and odd ns have been represented by 2k and 2k + 1, corresponding to the first

and the second terms. The (eg + bu)-(i,−1) entry in Table S3 is “n odd”. Therefore, only

the second term remains and

H+gA1u = ici,4k+1
2I,2K w

2I+1ρ|4k+1|+2Kei(4k+1)φ. (28)

This is the expansion formula for the (Eg + A1u) ⊗ (eg + b2u) problem. Through similar

procedures, we can readily obtain vibronic Hamiltonians for all 3025 (55 electronic × 55

vibrational parts) interterm and 550 (10× 55) intraterm problems in D4h symmetry.

Numerical Tests. The textbook problem of E ⊗ (b1 + b2) in D2d symmetry is taken

as the first example to compare our expansion formulas with numerical calculations. The

E entries in Table 1, the (b+ b) formulas in Tables 2 and 3, and the (b1 + b2) constraints

corresponding to the appropriate eigenvalues of symmetry operators in Tables 5 and 6 give:

H++ = ar2J1,2J2w
2J1
1 w2J2

2 ;H+− = br2J1+1,2J2
w2J1+1

1 w2J2
2 + ibi2J1,2J2+1w

2J1
1 w2J2+1

2 . (29)

w1/2 is the b1/2 coordinate. Transforming to the real |X〉 and |Y 〉 states (Eq. 3), we have

HXX +HY Y

2
= H++;

HXX −HY Y

2
= br2J1+1,2J2

w2J1+1
1 w2J2

2 ;HXY = −bi2J1,2J2+1w
2J1
1 w2J2+1

2 .

(30)

A triplet ethylene model is used to examine these three expansion formulas. The D2d twisted

triplet ethylene structure optimized at the unrestricted B3LYP33,34 level with the aug-cc-

pVTZ basis set35 is taken as the reference structure. All calculations are performed using

GAMESS-US.36 The one-electron model Hamiltonian operator contains kinetic and nuclei-

electron attraction operators. The delocalized π molecular orbitals (MOs) that correlate with

the HOMO and LUMO of ground state ethylene are taken as the one-electron |X〉 and |Y 〉
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states. The ethylene is distorted along the b1 torsional and the b2 scissoring normal modes.

The orbitals and modes are displayed in Figure 3. The orbitals are frozen with respect to the

distortion, i.e., they are genuine one-electron diabatic states. No diabatization is needed.

(a) X (b) Y

(c) b1 mode, 720 cm-1 (d) b2 mode, 1425 cm-1

(e) ex mode, 936 cm-1 (f) ey mode, 936 cm-1

FIG. 3. The orbitals and vibrational modes of the triplet ethylene used in the numerical tests of

the E ⊗ (b1 + b2) and E ⊗ e problems in D2d symmetry.

The Hamiltonian matrix elements are calculated on a square mesh of w1 and w2 from −1

to 1
√
uÅ in both dimensions, with a 0.1

√
uÅ interval. They are combined as the left hand

sides in Eq. 30 and fitted against free polynomials with all 44 wl1w
m
2 monomials up to eighth

order. The resultant expansions in the unit of eV are:

HXX +HY Y

2
= 2.57w2

1 + 4.21w2
2 − 1.74w4

1 − 2.68w2
1w

2
2 − 2.11w4

2 + 1.56w6
1 + 1.87w4

1w
2
2 + 1.90w2

1w
4
2

+1.53w6
2 − 0.58w8

1 − 0.56w6
1w

2
2 − 0.62w4

1w
4
2 − 0.55w2

1w
6
2 − 0.54w8

2;

HXX −HY Y

2
= 5.57w1 − 3.16w3

1 − 3.07w1w
2
2 + 1.27w5

1 + 2.06w3
1w

2
2 + 0.94w1w

4
2 − 0.28w7

1

−0.54w5
1w

2
2 − 0.45w3

1w
4
2 − 0.13w1w

6
2;

HXY = −0.15w2 + 0.07w2
1w2 − 0.06w4

1w2 − 0.08w2
1w

3
2 − 0.02w5

2 + 0.01w6
1w2

+0.02w4
1w

3
2 + 0.02w2

1w
5
2 + 0.005w7

2. (31)

All the other terms have too small coefficients to consider. The HXX+HY Y
2

value at w1 =

w2 = 0 has been set to 0. The fitting automatically annihilates the terms that are nullified

by symmetry, and the fitted results are in perfect agreement with the expansions in Eq. 30.

The second example of the E ⊗ e problem in D2d symmetry demonstrates how to obtain

formulas for unimodal problems. This is a subproblem of any of the E ⊗ (e+ γk) and
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E⊗ (e+ e) bimodal problems. We arbitrarily choose to start with the E⊗ (e+ b1) formulas

in deriving the E ⊗ e formulas. From the E entries in Table 1, the (e+ b) formulas in

Tables 2 and 3, and the (e+ b1) constraints corresponding to the appropriate Ĉ ′2-eigenvalues

(= σ̂v-eigenvalues) in Tables 5 and 6, we obtain the expansions:

H++ = ar,2m2I,2Kw
mod(m,2)+2Iρ2m+2K cos 2mφ;H+− = br,2m2I,2Kw

mod(m,2)+2I+1ρ|2m|+2Kei2mφ.(32)

Note that |2m| has been replaced by 2m in H++ because of the evenness of cos 2mφ; this

m only takes nonnegative integers. The E ⊗ e formulas are obtained by setting w = 0; only

the terms with a zero power of w remain, i.e., m = 2k and 2I = 0 in H++ and m = 2k + 1

and 2I = −2 in H+−:

H++ = ar,4k0,2Kρ
4k+2K cos 4kφ;H+− = br,4k+2

−2,2Kρ
|4k+2|+2Kei(4k+2)φ. (33)

Transforming to the real E components,

HXX +HY Y

2
= H++;

HXX −HY Y

2
= br,4k+2
−2,2K ρ

|4k+2|+2K cos (4k + 2)φ;HXY = −br,4k+2
−2,2K ρ

|4k+2|+2K sin (4k + 2)φ.

(34)

Keeping up to sixth order terms,

HXX +HY Y

2
= ar,00,2ρ

2 + ar,00,4ρ
4 + ar,40,0ρ

4 cos 4φ+ ar,00,0ρ
6 + ar,40,2ρ

6 cos 4φ

= ar,00,2

(
x2 + y2

)
+
(
ar,00,4 + ar,40,0

) (
x4 + y4

)
+
(

2ar,00,4 − 6ar,40,0

)
x2y2 +

(
ar,00,6 + ar,40,2

) (
x6 + y6

)
+
(

4ar,00,6 − 6ar,40,2

)
x2y2

(
x2 + y2

)
;

HXX −HY Y

2
=
(
br,2−2,0 + br,−2−2,0

)
ρ2 cos 2φ+

(
br,2−2,2 + br,−2−2,2

)
ρ4 cos 2φ+

(
br,−2−2,4 + br,2−2,4

)
ρ6 cos 2φ

+
(
br,−6−2,0 + br,6−2,0

)
ρ6 cos 6φ

=
(
br,2−2,0 + br,−2−2,0

) (
x2 − y2

)
+
(
br,2−2,2 + br,−2−2,2

) (
x4 − y4

)
+
(
br,−2−2,4 + br,2−2,4 + br,−6−2,0 + br,6−2,0

) (
x6 − y6

)
+
(
br,−2−2,4 + br,2−2,4 + 15br,−6−2,0 + 15br,6−2,0

)
x2y2

(
x2 − y2

)
;

HXY =
(
br,−2−2,0 − b

r,2
−2,0

)
ρ2 sin 2φ+

(
br,−2−2,2 − b

r,2
−2,2

)
ρ4 sin 2φ+

(
br,−2−2,4 − b

r,2
−2,4

)
ρ6 sin 2φ

+
(
br,−6−2,0 − b

r,6
−2,0

)
ρ6 sin 6φ

=
(
br,−2−2,0 − b

r,2
−2,0

)
2xy +

(
br,−2−2,2 − b

r,2
−2,2

)
2xy

(
x2 + y2

)
+
(
br,−2−2,4 − b

r,2
−2,4 + 3br,−6−2,0 − 3br,6−2,0

)
2xy

(
x4 + y4

)
+
(

4br,−2−2,4 − 4br,2−2,4 − 20br,−6−2,0 + 20br,6−2,0

)
x3y3. (35)

The second order terms in all three expansions are consistent with the second order E ⊗ e

block in Eq. 23 in Ref. 32. The (4k + 2)φ angular factor in Eq. 34 determines that the
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lowest order E⊗e coupling is at the second order, which is similar (but not identical) to the

Π⊗ π Renner-Teller coupling in linear molecules.7 Using the E component states and the e

component rocking modes shown in Figure 3, we calculate those matrix elements on a x-y

square mesh similar to the w1-w2 mesh above and fit the data against free polynomials with

all 27 xlym monomials up to sixth order. The resultant expansions of the matrix elements

in eV are:

HXX +HY Y

2
= 2.45

(
x2 + y2

)
− 0.47

(
x4 + y4

)
− 2.93x2y2 + 0.12

(
x6 + y6

)
+ 0.78x2y2

(
x2 + y2

)
;

HXX −HY Y

2
= −1.81

(
x2 − y2

)
+ 0.31

(
x4 − y4

)
− 0.04

(
x6 − y6

)
− 0.07x2y2

(
x2 − y2

)
;

HXY = 4.39xy + 0.59xy
(
x2 + y2

)
− 0.04xy

(
x4 + y4

)
− 0.82x3y3. (36)

The numerical results are again in perfect agreement with the derived formulas. The two

tests raise our confidence in the robustness of our derivation.

Generalization of the derivation to the other axial symmetries. The derivation

here is applicable to (p)JT problems in all axial symmetries, i.e., all the Cn, Sn, Cnv, Cnh,

Dn, Dnd, and Dnh symmetries. It is well known that in a Cn symmetry, a set of (p)JT-

coupled diabats, including all degenerate components, can always be transformed to be

Ĉn-eigenstates, with possible eigenvalues

eiM2π/n,M = 0,±1,±2, · · · ,±Int (n/2) . (37)

Int means taking the integer part of the argument. M = 0 corresponds to A states. Only

when n being even, M = ±n/2 gives the same Ĉn-eigenvalue −1 and corresponds to B states.

In the text below, we do not differentiate n being odd or even. One should keep in mind

that statements about B states and mathematical expressions with n/2 are applicable only

when n is even. A and B states are chosen to be real, i.e., A states transform like sinmnφ

and cosmnφ, and B states transform like sin mn
2
φ and cos mn

2
φ, recalling that φ is the polar

angle about the Cn axis. All the other ±M pairs exist only for n > 2 and they correspond to

EM degenerate states. We use M to label the states. |M〉 and |−M〉 are complex conjugates

of each other and are interconverted by the time-reversal operator. Note that this is also

true for A and B states. For an A state, it is obvious that |0〉 = |−0〉. Only one of |n/2〉

and |−n/2〉 shall be kept. We formally associate both of them to the same real B state i.e.,

|n/2〉 = |−n/2〉 and they are real. This is only a symbolism setting that gives the compact

Hamiltonian expression in Eq. 38.
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With the time-reversal symmetry being enforced, the Hamiltonian operator expanded in

the set of diabats can be written in a form of

Ĥ = (|M〉 〈M ′|+ |−M ′〉 〈−M |)HMM ′ + hc. (38)

Please note the hidden summation over all relevant states {|M〉} and {|M ′〉}. For the

M = M ′ diagonal terms and the terms with M and M ′ = 0 or n/2, HMM ′ is real, and HMM ′

of these terms takes 〈M |Ĥ|M
′〉

2
to counteract the duplication of +hc. Furthermore, for the

diagonal terms with M = M ′ = 0 or n/2, the two dyads in the parentheses are identical and

HMM takes 〈M |Ĥ|M〉
4

to counteract the two-fold duplications.

ĈnĤĈ
−1
n = ei(M−M

′)2π/n (|M〉 〈M ′|+ |−M ′〉 〈−M |) ĈnHMM ′ + hc. (39)

ĈnĤĈ
−1
n = Ĥ requires ĈnHMM ′ = ei(M

′−M)2π/nHMM ′ , i.e., each HMM ′ is characterized by a

Ĉn-eigenvalue (χCn), which takes the same range of values as in Eq. 37.

In Cnv symmetry, we can always adjust the phases of the states so that σv |±M〉 =

(−1)δk2 |∓M〉. Note that the (−1)δk2 only applies when M = 0 and ±n/2; it indicates a

possible sign-flipping for Ak and Bk states depending on k = 1 or 2. Consequently,

σ̂vĤσ̂
−1
v = (−1)δk2 (−1)δk′2 (|−M〉 〈−M ′|+ |M ′〉 〈M |) σ̂vHMM ′ + hc. (40)

σ̂vĤσ̂
−1
v = Ĥ requires σ̂vHMM ′ = (−1)δk2 (−1)δk′2 H∗MM ′ . Therefore, each HMM ′ is charac-

terized by σ̂v-eigenvalues (χσvRe, χ
σv
Im) = (±1,∓1) in pairs. When HMM ′ is real, χσvIm is chosen

to be 0. In Cnh symmetry, HMM ′ needs to have a parity (χI/σ = ±1) that is the product

of the parities of |M〉 and |M ′〉. For an odd n, the parity is with respect to σ̂h (′ and ′′).

For an even n, the parity is conventionally chosen to be with respect to Î (g and u). Dnh

is a composite of Dn (which is isomorphic with Cnv; (χσvRe, χ
σv
Im) replaced by

(
χ
C′

2
Re, χ

C′
2

Im

)
)

and Cnh. The matrix elements of Dnh (p)JT Hamiltonians are hence characterized by all 4

eigenvalues:
(
χCn ,

(
χ
C′

2
Re, χ

C′
2

Im

)
, χI/σh

)
.

Guided by the eigenvalues of symmetry operators, the derivation of (p)JT Hamiltonians in

any of the n-gonal axial symmetries parallels the present derivation in tetragonal symmetry.

The resultant formalism will also consist of a few lookup tables. It will be a programmable

formalism. Please recall that for an odd n, Dnd is isomorphic with Dnh, D2n and C2nv; for

an even n, Dnd is only isomorphic with D2n and C2nv. Also, for an even n, Sn is isomorphic

with Cn.
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IV. CONCLUSIONS

In this paper, we present a formalism for all bimodal tetragonal (pseudo-)Jahn-Teller

Hamiltonians. All tetragonal vibronic Hamiltonian matrix elements are characterized by at

most 4 eigenvalues of symmetry operators,
(
χC4 ,

(
χ
σv/C′

2
Re , χ

σv/C′
2

Im

)
, χI
)

. The number of the

sets of eigenvalues is tractable and all sets are exhausted in Table 1. The derivation for the

vibronic Hamiltonians has been reduced to finding expansion formulas that are eigenfunc-

tions of symmetry operators. This remarkable reduction and the systematic root-branch

and modularized approaches have enabled us to derive analytical Hamiltonian expansion

formulas up to arbitrary order for all bimodal tetragonal (p)JT problems: 54 problems in

each of C4 and S4 symmetries, 300 in each of C4v, D4, and D2d, 567 in C4h, and 3575 in D4h.

In comparison, only 153 problems were covered in Ref. 22 and they all belong to a specific

class of (E + A) ⊗ (e+ a) problems in trigonal symmetry. The formalism is complete and

correct, as corroborated by the numerical tests and the comparisons with previously derived

formulas. The formalism is also concise, as all formulas of the thousands of problems are

stored in the 9 lookup tables. Several examples are given to demonstrate the easiness in

using the tables to obtain needed (p)JT Hamiltonians. We want to emphasize that one may

use the formalism without understanding its derivation. To directly use the formulas, the

E and e components must follow the orientations exemplified in Figure 1. The tabulated

formalism is programmable, and we are currently working in this direction. With such a

program, explicit term-by-term expansions of the 5150 problems are at our finger tips with a

push of a button. Considering the ubiquity and importance of tetragonal vibronic problems,

the extensive applicability of the presented formalism is evident. This work has also paved

an efficient way for deriving (p)JT Hamiltonians in all axial symmetries. We have shown

that in the appropriately chosen electronic diabatic representation, all matrix elements of

the Hamiltonians can be similarly characterized by up to 4 eigenvalues of symmetry oper-

ators,
(
χCn/Sn ,

(
χ
σv/C′

2
Re , χ

σv/C′
2

Im

)
, χI/σh

)
. The derivations of these Hamiltonians parallel the

present one. A unified formalism for vibronic Hamiltonians in any axial symmetry is within

reach.
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