160 research outputs found

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D−4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    Galactic Halos As Boson Stars

    Full text link
    We investigate the boson star with the self-interacting scalar field as a model of galactic halos. The model has slightly increasing rotation curves and allows wider ranges of the mass(mm) and coupling(λ\lambda) of the halo dark matter particle than the non-interacting model previously suggested(ref.\cite{sin1}). Two quantities are related by \lambda^{\frac{1}{2}} (m_p/m)^2\st{>}{\sim} 10^{50}.Comment: 15 pages. Standard Latex file with 2 tex figures. Revised version to be published in Phy. Rev. D. (Stability arguments are added.

    A Soluble Acetylcholinesterase Provides Chemical Defense against Xenobiotics in the Pinewood Nematode

    Get PDF
    The pinewood nematode genome encodes at least three distinct acetylcholinesterases (AChEs). To understand physiological roles of the three pinewood nematode AChEs (BxACE-1, BxACE-2, and BxACE-3), BxACE-3 in particular, their tissue distribution and inhibition profiles were investigated. Immunohistochemistry revealed that BxACE-1 and BxACE-2 were distributed in neuronal tissues. In contrast, BxACE-3 was detected from some specific tissues and extracted without the aid of detergent, suggesting its soluble nature unlike BxACE-1 and BxACE-2. When present together, BxAChE3 significantly reduced the inhibition of BxACE-1 and BxACE-2 by cholinesterase inhibitors. Knockdown of BxACE-3 by RNA interference significantly increased the toxicity of three nematicidal compounds, supporting the protective role of BxACE-3 against chemicals. In summary, BxACE-3 appears to have a non-neuronal function of chemical defense whereas both BxACE-1 and BxACE-2 have classical neuronal function of synaptic transmission

    Planck Cold Clumps in the lambda Orionis Complex : II. Environmental Effects on Core Formation

    Get PDF
    Based on the 850 mu m dust continuum data from SCUBA-2 at James Clerk Maxwell Telescope (JCMT), we compare overall properties of Planck Galactic Cold Clumps (PGCCs) in the lambda Orionis cloud to those of PGCCs in the Orion A and B clouds. The Orion A and B clouds are well-known active star-forming regions, while the A Orionis cloud has a different environment as a consequence of the interaction with a prominent OB association and a giant H-II region. PGCCs in the lambda Orionis cloud have higher dust temperatures (T-d = 16.13 +/- 0.15 K) and lower values of dust emissivity spectral index (beta = 1.65 +/- 0.02) than PGCCs in the Orion A (T-d = 13.79 +/- 0.21 K, beta = 2.07 +/- 0.03) and Orion B (T-d = 13.82 +/- 0.19 K, beta =1.96 +/- 0.02) clouds. We find 119 substructures within the 40 detected PGCCs and identify them as cores. Out of a total of 119 cores, 15 cores are discovered in the lambda Orionis cloud, while 74 and 30 cores are found in the Orion A and B clouds, respectively. The cores in the lambda Orionis cloud show much lower mean values of size R = 0.08 pc, column density N(H-2) (9.5 +/- 1.2) x 10(22)cm(-2) , number density n(H-2) - (2.9 +/- 0.4) x 10 5 CM -3 , and mass M-core = 1.0 +/- 0.3 M(circle dot)compared to the cores in the Orion A [R = 0.11 pc, N(H-2) = (2.3 +/- 0.3) x 10(23) cm(-2), n(H-2) = (3.8 +/- 0.5) x 10(5)cm(-3) , and M-core = 2.4 +/- 0.3 M-circle dot] and Orion B [R = 0.16 pc, N(H-2) (3.8 +/- 0.4) x 10(23) cm(-2), n(H-2) = (15.6 +/- 1.8) x 10(5) cm(-3) , and M-core = 2.7 +/- 0.3 M-circle dot] clouds. These core properties in the A Orionis cloud can be attributed to the photodissociation and external heating by the nearby H rr region, which may prevent the PGCCs from forming gravitationally bound structures and eventually disperse them. These results support the idea of negative stellar feedback on core formation.Peer reviewe

    Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    Get PDF
    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.Biological and Environmental Research/[DE-FC02-07ER64494]/BER/Estados UnidosNational Science Foundation/[DGE-1256259]/NSF/Estados UnidosNational Science Foundation/[DEB-0747002]/NSF/Estados UnidosNational Science Foundation/[MCB-0702025]/NSF/Estados UnidosNational Institutes of Health/[T32 GM07215]/NIH/Estados UnidosUniversidad de Costa Rica/[]/UCR/Costa RicaMinisterio de Ciencia, Tecnología y Telecomunicaciones/[]/MICITT/Costa RicaUniversity of Wisconsin-Madison's Hilldale Undergraduate Faculty Research Fellowship/[]//Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    PECVD SiN(x) Induced Hydrogen Passivation in String Ribbon Silicon

    Get PDF
    Presented at the 28th IEEE Photovoltaic Specialists Conference; Anchorage, Alaska; September, 2000. ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.To improve the bulk minority carrier lifetime in String Ribbon silicon, SiN(x) induced defect passivation during a post deposition anneal is investigated. Our results indicate that SiN(x) induced hydrogen passivation is very effective when the SiN(x) film is annealed in conjunction with a screen-printed AI layer on the back. In addition, it is found that controlled rapid cooling can be used to enhance the defect passivation process. A model is proposed which relates the high temperature passivation to the release of hydrogen from the SiN(x) film, the injection of vacancies from backside AI alloying, and the retention of hydrogen at defect sites. High efficiency screen-printed String Ribbon solar cells (>14.5%) are fabricated utilizing the simultaneous SiN(x)/AI anneal in a belt furnace for hydrogenation and AI-BSF formation, followed by RTP firing of screen-printed contacts to improve the retention of hydrogen at defects

    Fundamental Understanding and Implementation of Al-enhanced PECVD SiN(x) Hydrogenation in Silicon Ribbons

    Get PDF
    Presented at the 12th International Photovoltaic Science and Engineering Conference; Jeju Island, Korea; June 11-15, 2001.A low-cost, manufacturable defect gettering and passivation treatment, involving simultaneous anneal of a PECVD SiN(x) film and a screen-printed Al layer, is found to improve the lifetime in Si ribbon materials from 1-10 μs to over 20 μs. Our results indicate that the optimum anneal temperature for SiN(x)-induced hydrogenation is 700°C for EFG and increases to 825°C when Al is present on the back of the sample. This not only improves the degree of hydrogenation, but also forms an effective back surface field. We propose a three-step physical model, based our results, in which defect passivation is governed by the release of hydrogen from the SiN(x) film due to annealing, the generation of vacancies during Al-Si alloying, and the retention of hydrogen at defect sites due to rapid cooling. Controlled rapid cooling was implemented after the hydrogenation anneal to improve the retention of hydrogen at defect sites by incorporating an RTP contact firing scheme. RTP contact firing improved the performance of ribbon solar cells by 1.3-1.5% absolute when compared to slow, belt furnace contact firing. This enhancement was due to improved back surface recombination velocity, fill factor, and bulk lifetime. Enhanced hydrogenation and rapid heating and cooling resulted in screen-printed Si ribbon cell efficiencies approaching 15%
    • …
    corecore