7,153 research outputs found

    Superconducting gap structure of the 115's revisited

    Full text link
    Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (\pi,\pi,q_z) - the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted dx2y2d_{x^2-y^2} order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.Comment: 8 pages, 4 figures; Accepted for publication in JPC

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Time--Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System

    Full text link
    Several singular limits are investigated in the context of a 2×22 \times 2 system arising for instance in the modeling of chromatographic processes. In particular, we focus on the case where the relaxation term and a L2L^2 projection operator are concentrated on a discrete lattice by means of Dirac measures. This formulation allows to study more easily some time-splitting numerical schemes

    The Luminosity Profiles of Brightest Cluster Galaxies

    Full text link
    (Abridged) We have derived detailed R band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag/arcsec^2. Light profiles were initially fitted with a Sersic's R^(1/n) model, but we found that 205 (~48) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n~1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCGs luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ~0.2 mag than single profile BCG. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M_R=-23.8 +/- 0.6 mag for single profile BCGs and M_R=-24.0 +/- 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best fit slope of the Kormendy relation for the whole sample is a = 3.13 +/- 0.04$. However, when fitted separately, single and double profile BCGs show different slopes: a_(single) = 3.29 +/- 0.06 and a_(double)= 2.79 +/- 0.08. On the other hand, we did not find differences between these two BCGs categories when we compared global cluster properties such as the BCG-projected position relative to the cluster X-ray center emission, X-ray luminosity, or BCG orientation with respect to the cluster position angle.Comment: August 2011 issue of ApJS, volume 195, 15 http://iopscience.iop.org/0067-0049/195/2/1

    Dark Matter Scaling Relations

    Get PDF
    We establish the presence of a dark matter core radius, for the first time in a very large number of spiral galaxies of all luminosities. Contrary to common opinion we find that the sizes of these cores and the " DM core problem" are bigger for more massive spirals. As a result the Burkert profile provides an excellent mass model for dark halos around disk galaxies. Moreover, we find that the spiral dark matter core densities ρ0\rho_{0} and core radii r0r_{0} lie in the same scaling relation ρ0=4.5×102(r0/kpc)2/3Mpc3\rho_{0}=4.5\times 10^-2 (r_{0}/kpc)^{-2/3} M_{\odot}pc^{-3} of dwarf galaxies with core radii upto ten times more smaller.Comment: 4 pages, 4 figures, Accepted for Publication in Apj Let
    corecore