4,290 research outputs found
Agglomeration externalities, innovation and regional growth: Theoretical perspectives and meta-analysis
Technological change and innovation and are central to the quest for regional development. In the globally-connected knowledge-driven economy, the relevance of agglomeration forces that rely on proximity continues to increase, paradoxically despite declining real costs of information, communication and transportation. Globally, the proportion of the population living in cities continues to grow and sprawling cities remain the engines of regional economic transformation. The growth of cities results from a complex chain that starts with scale, density and geography, which then combine with industrial structure characterised by its extent of specialisation, competition and diversity, to yield innovation and productivity growth that encourages employment expansion, and further urban growth through inward migration. This paper revisits the central part of this virtuous circle, namely the Marshall-Arrow-Romer externalities (specialisation), Jacobs externalities (diversity) and Porter externalities (competition) that have provided alternative explanations for innovation and urban growth. The paper evaluates the statistical robustness of evidence for such externalities presented in 31 scientific articles, all building on the seminal work of Glaeser et al. (1992). We aim to explain variation in estimation results using study characteristics by means of ordered probit analysis. Among the results, we find that the impact of diversity depends on how it is measured and that diversity is important for the high-tech sector. High population density increases the chance of finding positive effects of specialisation on growth. More recent data find more positive results for both specialization and diversity, suggesting that agglomeration externalities become more important over time. Finally, primary study results depend on whether or not the externalities are considered jointly and on other features of the regression model specification
When The Silv\u27ry Moon Is Shining On The Goldn Harvest Sheaves
https://digitalcommons.library.umaine.edu/mmb-vp/4831/thumbnail.jp
When You Sang The Palms to Me
https://digitalcommons.library.umaine.edu/mmb-vp/4668/thumbnail.jp
Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways
The new model of fitting the spectral energy distributions of Mkn 421 and Mkn 501
The spectral energy distribution (SED) of TeV blazars has a double-humped
shape that is usually interpreted as Synchrotron Self Compton (SSC) model. The
one zone SSC model is used broadly but cannot fit the high energy tail of SED
very well. It need bulk Lorentz factor which is conflict with the observation.
Furthermore one zone SSC model can not explain the entire spectrum. In the
paper, we propose a new model that the high energy emission is produced by the
accelerated protons in the blob with a small size and high magnetic field, the
low energy radiation comes from the electrons in the expanded blob. Because the
high and low energy photons are not produced at the same time, the requirement
of large Doppler factor from pair production is relaxed. We present the fitting
results of the SEDs for Mkn 501 during April 1997 and Mkn 421 during March 2001
respectively.Comment: 5 pages, 1 figures, 1table. accepted for publication in Sciences in
China --
When the tale comes true: multiple populations and wide binaries in the Orion Nebula Cluster
The high-quality OmegaCAM photometry of the 3x3 deg around the Orion Nebula
Cluster (ONC) in r, and i filters by Beccari et al.(2017) revealed three
well-separated pre-main sequences in the color-magnitude diagram (CMD). The
objects belonging to the individual sequences are concentrated towards the
center of the ONC. The authors concluded that there are two competitive
scenarios: a population of unresolved binaries and triples with an exotic mass
ratio distribution, or three stellar populations with different ages. We use
Gaia DR2 in combination with the photometric OmegaCAM catalog to test and
confirm the presence of the putative three stellar populations. We also study
multiple stellar systems in the ONC for the first time using Gaia DR2. We
confirm that the second and third sequence members are more centrally
concentrated towards the center of the ONC. In addition we find an indication
that the parallax and proper motion distributions are different among the
members of the stellar sequences. The age difference among stellar populations
is estimated to be 1-2 Myr. We use Gaia measurements to identify and remove as
many unresolved multiple system candidates as possible. Nevertheless we are
still able to recover two well-separated sequences with evidence for the third
one, supporting the existence of the three stellar populations. We were able to
identify a substantial number of wide binary objects (separation between
1000-3000 au). This challenges previously inferred values that suggested no
wide binary stars exist in the ONC. Our inferred wide-binary fraction is approx
5%. We confirm the three populations correspond to three separated episodes of
star formation. Based on this result, we conclude that star formation is not
happening in a single burst in this region. (abridged)Comment: Astronomy and Astrophysics (A&A) accepted. 12 pages, 9 figures +
appendix. New version with language corrections and new ID values in Tab.A.
Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: from fluid to kinetic modeling
The nonlinear evolution of collisionless plasmas is typically a multi-scale
process where the energy is injected at large, fluid scales and dissipated at
small, kinetic scales. Accurately modelling the global evolution requires to
take into account the main micro-scale physical processes of interest. This is
why comparison of different plasma models is today an imperative task aiming at
understanding cross-scale processes in plasmas. We report here the first
comparative study of the evolution of a magnetized shear flow, through a
variety of different plasma models by using magnetohydrodynamic, Hall-MHD,
two-fluid, hybrid kinetic and full kinetic codes. Kinetic relaxation effects
are discussed to emphasize the need for kinetic equilibriums to study the
dynamics of collisionless plasmas in non trivial configurations. Discrepancies
between models are studied both in the linear and in the nonlinear regime of
the magnetized Kelvin-Helmholtz instability, to highlight the effects of small
scale processes on the nonlinear evolution of collisionless plasmas. We
illustrate how the evolution of a magnetized shear flow depends on the relative
orientation of the fluid vorticity with respect to the magnetic field direction
during the linear evolution when kinetic effects are taken into account. Even
if we found that small scale processes differ between the different models, we
show that the feedback from small, kinetic scales to large, fluid scales is
negligable in the nonlinear regime. This study show that the kinetic modeling
validates the use of a fluid approach at large scales, which encourages the
development and use of fluid codes to study the nonlinear evolution of
magnetized fluid flows, even in the colisionless regime
- âŠ