586 research outputs found
A compact design for the Josephson mixer: the lumped element circuit
We present a compact and efficient design in terms of gain, bandwidth and
dynamical range for the Josephson mixer, the superconducting circuit performing
three-wave mixing at microwave frequencies. In an all lumped-element based
circuit with galvanically coupled ports, we demonstrate non degenerate
amplification for microwave signals over a bandwidth up to 50 MHz for a power
gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70
and its saturation power reaches dBm.Comment: 5 pages, 4 figure
Description of nuclear systems with a self-consistent configuration-mixing approach. I: Theory, algorithm, and application to the C test nucleus
Although self-consistent multi-configuration methods have been used for
decades to address the description of atomic and molecular many-body systems,
only a few trials have been made in the context of nuclear structure. This work
aims at the development of such an approach to describe in a unified way
various types of correlations in nuclei, in a self-consistent manner where the
mean-field is improved as correlations are introduced. The goal is to reconcile
the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This
approach is referred as "variational multiparticle-multihole configuration
mixing method". It is based on a double variational principle which yields a
set of two coupled equations that determine at the same time the expansion
coefficients of the many-body wave function and the single particle states. The
formalism is derived and discussed in a general context, starting from a
three-body Hamiltonian. Links to existing many-body techniques such as the
formalism of Green's functions are established. First applications are done
using the two-body D1S Gogny effective force. The numerical procedure is tested
on the C nucleus in order to study the convergence features of the
algorithm in different contexts. Ground state properties as well as
single-particle quantities are analyzed, and the description of the first
state is examined. This study allows to validate our numerical algorithm and
leads to encouraging results. In order to test the method further, we will
realize in the second article of this series, a systematic description of more
nuclei and observables obtained by applying the newly-developed numerical
procedure with the same Gogny force. As raised in the present work,
applications of the variational multiparticle-multihole configuration mixing
method will however ultimately require the use of an extended and more
constrained Gogny force.Comment: 22 pages, 18 figures, accepted for publication in Phys. Rev. C. v2:
minor corrections and references adde
A note on the Landauer principle in quantum statistical mechanics
The Landauer principle asserts that the energy cost of erasure of one bit of
information by the action of a thermal reservoir in equilibrium at temperature
T is never less than . We discuss Landauer's principle for quantum
statistical models describing a finite level quantum system S coupled to an
infinitely extended thermal reservoir R. Using Araki's perturbation theory of
KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural
ergodicity assumption on the joint system S+R, that Landauer's bound saturates
for adiabatically switched interactions. The recent work of Reeb and Wolf on
the subject is discussed and compared
The formation and disintegration of magnetic bright points observed by Sunrise/IMaX
The evolution of the physical parameters of magnetic bright points (MBPs)
located in the quiet Sun (mainly in the interwork) during their lifetime is
studied. First we concentrate on the detailed description of the magnetic field
evolution of three MBPs. This reveals that individual features follow
different, generally complex, and rather dynamic scenarios of evolution. Next
we apply statistical methods on roughly 200 observed MBP evolutionary tracks.
MBPs are found to be formed by the strengthening of an equipartition field
patch, which initially exhibits a moderate downflow. During the evolution,
strong downdrafts with an average velocity of 2.4 km/s set in. These flows,
taken together with the concurrent strengthening of the field, suggest that we
are witnessing the occurrence of convective collapses in these features,
although only 30% of them reach kG field strengths. This fraction might turn
out to be larger when the new 4 m class solar telescopes are operational as
observations of MBPs with current state of the art instrumentation could still
be suffering from resolution limitations. Finally, when the bright point
disappears (although the magnetic field often continues to exist) the magnetic
field strength has dropped to the equipartition level and is generally somewhat
weaker than at the beginning of the MBP's evolution. Noteworthy is that in
about 10% of the cases we observe in the vicinity of the downflows small-scale
strong (exceeding 2 km/s) intergranular upflows related spatially and
temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical
Journal
On the mixing property for a class of states of relativistic quantum fields
Let be a factor state on the quasi-local algebra of
observables generated by a relativistic quantum field, which in addition
satisfies certain regularity conditions (satisfied by ground states and the
recently constructed thermal states of the theory). We prove that
there exist space and time translation invariant states, some of which are
arbitrarily close to in the weak* topology, for which the time
evolution is weakly asymptotically abelian
Observation of a resonant four-body interaction in cold cesium Rydberg atoms
Cold Rydberg atoms subject to long-range dipole-dipole interactions represent
a particularly interesting system for exploring few-body interactions and
probing the transition from 2-body physics to the many-body regime. In this
work we report the direct observation of a resonant 4-body Rydberg interaction.
We exploit the occurrence of an accidental quasi-coincidence of a 2-body and a
4-body resonant Stark-tuned Forster process in cesium to observe a resonant
energy transfer requiring the simultaneous interaction of at least four
neighboring atoms. These results are relevant for the implementation of quantum
gates with Rydberg atoms and for further studies of many-body physics.Comment: 5 pages, 5 figure
Scattering description of Andreev molecules
An Andreev molecule is a system of closely spaced superconducting weak links
accommodating overlapping Andreev Bound States. Recent theoretical proposals
have considered one-dimensional Andreev molecules with a single conduction
channel. Here we apply the scattering formalism and extend the analysis to
multiple conduction channels, a situation encountered in epitaxial
superconductor/semiconductor weak links. We obtain the multi-channel bound
state energy spectrum and quantify the contribution of the microscopic
non-local processes leading to the formation of Andreev molecules.Comment: Resubmission to SciPos
Entanglement of two individual atoms using the Rydberg blockade
We report on our recent progress on the manipulation of single rubidium atoms
trapped in optical tweezers and the generation of entanglement between two
atoms, each individually trapped in neighboring tweezers. To create an
entangled state of two atoms in their ground states, we make use of the Rydberg
blockade mechanism. The degree of entanglement is measured using global
rotations of the internal states of both atoms. Such internal state rotations
on a single atom are demonstrated with a high fidelity.Comment: Proceeding of the 19th International Conference on Laser Spectroscopy
ICOLS 2009, 7-13 June 2009, Hokkaido, Japa
- …