1,162 research outputs found

    Quantum nonlocality in the presence of superselection rules and data hiding protocols

    Get PDF
    We consider a quantum system subject to superselection rules, for which certain restrictions apply to the quantum operations that can be implemented. It is shown how the notion of quantum-nonlocality has to be redefined in the presence of superselection rules: there exist separable states that cannot be prepared locally and exhibit some form of nonlocality. Moreover, the notion of local distinguishability in the presence of classical communication has to be altered. This can be used to perform quantum information tasks that are otherwise impossible. In particular, this leads to the introduction of perfect quantum data hiding protocols, for which quantum communication (eventually in the form of a separable but nonlocal state) is needed to unlock the secret.Comment: 4 page

    Entanglement spectrum and boundary theories with projected entangled-pair states

    Get PDF
    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models, like a deformed AKLT [1], an Ising-type [2], and Kitaev's toric code [3], both in finite ladders and infinite square lattices. In the latter case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.Comment: 13 pages, 14 figure

    Renormalization algorithm with graph enhancement

    Get PDF
    We introduce a class of variational states to describe quantum many-body systems. This class generalizes matrix product states which underly the density-matrix renormalization group approach by combining them with weighted graph states. States within this class may (i) possess arbitrarily long-ranged two-point correlations, (ii) exhibit an arbitrary degree of block entanglement entropy up to a volume law, (iii) may be taken translationally invariant, while at the same time (iv) local properties and two-point correlations can be computed efficiently. This new variational class of states can be thought of as being prepared from matrix product states, followed by commuting unitaries on arbitrary constituents, hence truly generalizing both matrix product and weighted graph states. We use this class of states to formulate a renormalization algorithm with graph enhancement (RAGE) and present numerical examples demonstrating that improvements over density-matrix renormalization group simulations can be achieved in the simulation of ground states and quantum algorithms. Further generalizations, e.g., to higher spatial dimensions, are outlined.Comment: 4 pages, 1 figur

    Causal structure of the entanglement renormalization ansatz

    Get PDF
    We show that the multiscale entanglement renormalization ansatz (MERA) can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat spacelike boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains. This result clarifies the nature of the ansatz, and suggests a generalization to quantum field theory. It also constitutes an independent justification of the connection between MERA and hyperbolic geometry which was proposed as a concrete implementation of the AdS-CFT correspondence

    A bipartite class of entanglement monotones for N-qubit pure states

    Full text link
    We construct a class of algebraic invariants for N-qubit pure states based on bipartite decompositions of the system. We show that they are entanglement monotones, and that they differ from the well know linear entropies of the sub-systems. They therefore capture new information on the non-local properties of multipartite systems.Comment: 6 page

    Aromatic emission from the ionised mane of the Horsehead nebula

    Get PDF
    We study the evolution of the Aromatic Infrared Bands (AIBs) emitters across the illuminated edge of the Horsehead nebula and especially their survival and properties in the HII region. We present spectral mapping observations taken with the Infrared Spectrograph (IRS) at wavelengths 5.2-38 microns. A strong AIB at 11.3 microns is detected in the HII region, relative to the other AIBs at 6.2, 7.7 and 8.6 microns. The intensity of this band appears to be correlated with the intensity of the [NeII] at 12.8 microns and of Halpha, which shows that the emitters of the 11.3 microns band are located in the ionised gas. The survival of PAHs in the HII region could be due to the moderate intensity of the radiation field (G0 about 100) and the lack of photons with energy above about 25eV. The enhancement of the intensity of the 11.3 microns band in the HII region, relative to the other AIBs can be explained by the presence of neutral PAHs. Our observations highlight a transition region between ionised and neutral PAHs observed with ideal conditions in our Galaxy. A scenario where PAHs can survive in HII regions and be significantly neutral could explain the detection of a prominent 11.3 microns band in other Spitzer observations.Comment: 9 pages, 9 figures, accepted for publication in A&

    The Algebraic Bethe Ansatz and Tensor Networks

    Get PDF
    We describe the Algebraic Bethe Ansatz for the spin-1/2 XXX and XXZ Heisenberg chains with open and periodic boundary conditions in terms of tensor networks. These Bethe eigenstates have the structure of Matrix Product States with a conserved number of down-spins. The tensor network formulation suggestes possible extensions of the Algebraic Bethe Ansatz to two dimensions

    Electron-Beam Manipulation of Silicon Dopants in Graphene

    Full text link
    The direct manipulation of individual atoms in materials using scanning probe microscopy has been a seminal achievement of nanotechnology. Recent advances in imaging resolution and sample stability have made scanning transmission electron microscopy a promising alternative for single-atom manipulation of covalently bound materials. Pioneering experiments using an atomically focused electron beam have demonstrated the directed movement of silicon atoms over a handful of sites within the graphene lattice. Here, we achieve a much greater degree of control, allowing us to precisely move silicon impurities along an extended path, circulating a single hexagon, or back and forth between the two graphene sublattices. Even with manual operation, our manipulation rate is already comparable to the state-of-the-art in any atomically precise technique. We further explore the influence of electron energy on the manipulation rate, supported by improved theoretical modeling taking into account the vibrations of atoms near the impurities, and implement feedback to detect manipulation events in real time. In addition to atomic-level engineering of its structure and properties, graphene also provides an excellent platform for refining the accuracy of quantitative models and for the development of automated manipulation.Comment: 5 figures, 4 supporting figure

    Entanglement and bifurcations in Jahn-Teller models

    Get PDF
    We compare and contrast the entanglement in the ground state of two Jahn-Teller models. The E⊗ÎČE\otimes\beta system models the coupling of a two-level electronic system, or qubit, to a single oscillator mode, while the E⊗ϔE\otimes\epsilon models the qubit coupled to two independent, degenerate oscillator modes. In the absence of a transverse magnetic field applied to the qubit, both systems exhibit a degenerate ground state. Whereas there always exists a completely separable ground state in the E⊗ÎČE\otimes\beta system, the ground states of the E⊗ϔE\otimes\epsilon model always exhibit entanglement. For the E⊗ÎČE\otimes\beta case we aim to clarify results from previous work, alluding to a link between the ground state entanglement characteristics and a bifurcation of a fixed point in the classical analogue. In the E⊗ϔE\otimes\epsilon case we make use of an ansatz for the ground state. We compare this ansatz to exact numerical calculations and use it to investigate how the entanglement is shared between the three system degrees of freedom.Comment: 11 pages, 9 figures, comments welcome; 2 references adde

    Matrix Product Density Operators: Simulation of finite-T and dissipative systems

    Get PDF
    We show how to simulate numerically both the evolution of 1D quantum systems under dissipation as well as in thermal equilibrium. The method applies to both finite and inhomogeneous systems and it is based on two ideas: (a) a representation for density operators which extends that of matrix product states to mixed states; (b) an algorithm to approximate the evolution (in real or imaginary time) of such states which is variational (and thus optimal) in nature.Comment: See also M. Zwolak et al. cond-mat/040644
    • 

    corecore