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We introduce a class of variational states to describe quantum many-body systems. This class generalizes
matrix product states which underly the density-matrix renormalization group approach by combining them with
weighted graph states. States within this class may (i) possess arbitrarily long-ranged two-point correlations, (ii)
exhibit an arbitrary degree of block entanglement entropy up to a volume law, (iii) may be taken translationally
invariant, while at the same time (iv) local properties and two-point correlations can be computed efficiently.
This new variational class of states can be thought of as being prepared from matrix product states, followed by
commuting unitaries on arbitrary constituents, hence truly generalizing both matrix product and weighted graph
states. We use this class of states to formulate a renormalization algorithm with graph enhancement (RAGE)
and present numerical examples demonstrating that improvements over density-matrix renormalization group
simulations can be achieved in the simulation of ground states and quantum algorithms. Further generalizations,
e.g., to higher spatial dimensions, are outlined.

PACS numbers: 03.67.Hk,03.65.Ud

Strongly correlated quantum systems give rise to a number
of intriguing phenomena in condensed matter systems such
as the existence of rare-earth magnetic insulators or high-
temperature superconductors. The classical description of
such quantum many-body systems is difficult, as entangle-
ment and interactions cannot be neglected. A full solution
of the underlying microscopic model is unfeasible due to the
exponential growth of the dimension of the Hilbert space with
the number of constituent particles. In turn, numerical vari-
ational approaches, like thedensity-matrix renormalization
group (DMRG) technique [1, 2], make use of an important
observation. Typically, ground or thermal states do not oc-
cupy the exponentially large Hilbert space, but a much smaller
subspace. DMRG can indeed be seen as a variation over
the polynomially sized set of matrix product states (MPS)
[3, 4, 5, 6], approximating the true ground state iteratively.
This approach is expected to work particularly well in one-
dimensional gapped systems, in which correlation functions
decay exponentially and the entanglement entropy saturates
at larger block sizes, satisfying an “area law” [7].

Any such variational method, however, has its limitations.
For example, in a critical one-dimensional system, the MPS
description is no longer economical, with other variational
sets potentially being more appropriate. When it comes to
time evolution, area laws may be replaced by volume laws
[9], and a DMRG picture can become very expensive.Pro-
jected entangled pair states(PEPS) form higher-dimensional
analogues ofmatrix product statesMPS [12]. This approach
is very promising but still in development. For critical sys-
tems,multi-scale entanglement renormalizationor contractor

renormalization[10, 11] are promising candidates also in two
dimensions, but are not easily reconcilable with translational
invariance.Weighted graph states(WGS) [13, 14, 15] are a
family of states that can embody long-range correlations in
any spatial dimensions, but do not seem to grasp short-range
properties as well as MPS do [16].

With these observations in mind, one of the key questions
seems to be the following. How far can one go with the ef-
ficient classical description of quantum many-body systems?
Can MPS for example be generalized to a larger class of states
encompassing some of the above approaches while retaining
all of their convenient features? Can one have additional long-
range correlations while still being able to efficiently com-
pute local properties and correlation functions? In particular,
given the complementary strengths of the MPS and the WGS
approach it is natural to attempt a unification of the two ap-
proaches. This work shows that indeed the two pictures can
be combined to form a new enlarged variational set, while re-
taining all of the desirable structural elements of its ancestors.
We first define the set, discuss variations, sketch generaliza-
tions and finally demonstrate applicability and performance
as well as limitations in ground state approximations and sim-
ulations of quantum algorithms.

Renormalization algorithm with graph enhancement. –We
start from MPS of a quantum chain of lengthN , consisting of
d-level systems, as used in DMRG [3, 4, 5, 6]

|ψ(A)〉 :=
d−1
∑

s1,...,sN=0

tr[A(1)
s1
. . . A(N)

sN
]|s1, . . . , sN 〉 (1)
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where theA(n)
sn are complexD×D matrices. For open bound-

ary conditions, the left- and rightmost matrices can be taken
to be vectors. For simplicity of notation, but in a way that can
be trivially generalized, we now fixd = 2. MPS have correla-
tion functions〈Z(j)Z(j+k)〉 − 〈Z(j)〉〈Z(j+k)〉 exponentially
decaying ink and satisfy an area law [7] by construction [19].
An area law in 1D implies that any Renyi entropySα of the
reduced state of a block ofL contiguous spins will eventually
saturate (Sα(ρL) = O(1)); many ground states possess this
property and hence a good and economical MPS approxima-
tion of them is possible [8].

Now we go beyond this picture and apply to the MPS any
set of commuting unitaries between any two constituents, ir-
respective of the distance. More specifically, we consider
the adjacency matrixΦ of a weighted simple graph with
Φk,l ∈ [0, 2π) and apply without loss of generality the corre-
spondingphase gatesU(Φk,l) := |0, 0〉〈0, 0|+ |0, 1〉〈0, 1|+
|1, 0〉〈1, 0|+ |1, 1〉〈1, 1|eiΦk,l between the particlesk, l in the
chain. Finally, we apply local rotationsVj ∈ U(2), to arrive
at the variational class of states defined by

|ψ(A,Φ, V )〉 :=

N
∏

j=1

V
(j)
j

∏

k,l

U (k,l)(Φk,l)

×
∑

s1,...,sN

tr[A(1)
s1
. . . A(N)

sN
]|s1, . . . , sN 〉, (2)

which then forms the basis of therenormalization group algo-
rithm with graph enhancement(RAGE). The above set clearly
embodies a large variational class. By definition, forΦ = 0
andVj = 1, it includes the MPS. It also includes superposi-
tions of WGS as first considered in Ref. [15],

|ϕ〉 =
∑

m

αm

N
∏

j=1

V
(j)
j

1
∑

s1,...,sN=0

e−isTΦs+d
T
ms|s1, . . . , sN 〉 (3)

=
N
∏

j=1

V
(j)
j

∏

k,l

U (k,l)(Φk,l)
∑

m

αm|ηm,1〉 ⊗ . . .⊗ |ηm,N 〉

wheredm = (dm,1, . . . , dm,N ), s = (s1, . . . , sN ), |ηm,n〉 :=
|0〉+ edm,n |1〉 andU(Φm,n) are defined as above, and which
can be shown to be of the form of Eq. (2). For simplicity, and
w.l.o.g, we will often setVj = 1 subsequently.

Main properties of RAGE states. –To start with, RAGE
states have a polynomially sized description, where the MPS
and the WGS part are fully determined byO(ND2) and
O(N2) real parameters respectively. Furthermore

(i) Volume law for the entanglement entropy:By having a
collection of maximally entangled qubit pairs across a bound-
ary, the von-Neumann entropy of a block of lengthL can be
taken to scale asS(ρL) = O(L). Encompassing graph states,
our class can hence maximize the entanglement entropy.

(ii) Translational invariance: Whenever the MPS part is
translationally invariant,Φ is a cyclic matrix, andVj is the
same for allj, the whole state|ϕ〉 is manifestly translation-
ally invariant. There exist other translational invariantstates

that do not have this simple form. The key feature, though, is
that unlike for multiscale entanglement renormalization [10],
there exists this natural subset of states for which translational
invariance is guaranteed to be exactly fulfilled, while at the
same time a volume law for block-wise entanglement is pos-
sible [13, 14].

(iii) Completeness:As MPS already form a complete set
in Hilbert space (if one allowsD to scale asO(2N ), one can
represent any pure state in(C2)⊗N ) and this remains true for
the RAGE set.

Efficient computation of local properties and correlation
functions. –The previous properties are all very natural and
desirable, and especially (i) cannot be achieved efficiently
with MPS alone. However, as will be shown, this does not
prevent us from computing local properties and correlation
functions efficiently – which is the key feature of this set.

To compute expectation values of observables with small
support we use the relevant reduced density matrixρS , which
may be computed efficiently with an effort ofO(ND5) in
the total sizeN of the systemS ⊂ {1, . . . , N}. Controlled
phase gates acting exclusively on qubits that are traced out
make no contribution, while those that act on the spins in
S = {m1, . . . ,m|S|} amount to a redefinition of the observ-
ables that are local toS. Therefore we redefineΦ such that the
above simplifications are enforced,ωk,l = Φk,l if k ∈ S, l ∈
S̄ or k ∈ S̄, l ∈ S, whereS̄ = {1, . . . , N} \ S, andωk,l = 0

otherwise. We also defineE(j)
k,l := A

(j)
k ⊗ (A

(j)
l )∗, where∗

denotes complex conjugation. The reduced density matrixρS
(up to phase gates inS) is then found to be

ρS =

1
∑

s1,...,sN=0

r1,...,rN=0

tr[E(1)
s1,r1

. . . E(N)
sN ,rN

]trS̄ [(
∏

k,l

U (k,l)(ωk,l))

×|s1, . . . , sN〉〈r1, . . . , rN |(
∏

k,l

U (k,l)†(ωk,l))]

=
1

∑

s1,...,sN=0

r1,...,rN=0

tr[E(1)
s1,r1

. . . E(N)
sN ,rN

]|sm1
, . . . , sm|S|

〉

×〈rm1
, . . . , rm|S|

|
∏

k∈S,l∈S̄

eiωk,l(δsk,1−δrk,1)δsl,1 .

The key of the above argument is that the effect of the phases
is a mere modification of the transfer operators of the MPS
by a phase factor, the phase depending on the matrix element
in question. Thus, the evaluation of expectation values is per-
formed using (products of) transfer operators associated with
the single sites. The reduced state can then be written as

ρS =

1
∑

sm1
,...,sm|S|

=0

rm1
,...,rm|S|

=0

tr
[

N
∏

k=1

T (k)
sk,rk

({smp
, rmp

: mp ∈ S})
]

× |sm1
, . . . , sm|S|

〉〈rm1
, . . . , rm|S|

|,

where nowT (k)
sk,rk({smp

, rmp
}) := E

(k)
sk,rk if k ∈ S, which
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are the unmodified transfer operators of MPS, and

T (k)
sk,rk

({smp
, rmp

}) :=

1
∑

l=0

B
(k)
l ({smp

}, sk)

⊗ (B
(k)
l ({rmp

}, rk))
∗

if k ∈ S̄, which are the transfer operators modified by
phases,B(k)

l ({smp
}, sk) := A

(k)
l

∏

mp∈S e
iωmp,kδsmp ,1δsk,1 .

Grouped in this way, the reduced density operator can in-
deed be evaluated efficiently. In fact, for each{rmp

, smp
}

the effort to compute the entry of the reduced state is merely
O(ND5), as one has to multiplyN transfer matrices of di-
mensionD2 ×D2, just as in the case of MPS. This procedure
is inefficient in|S|, with an exponential scaling effort. How-
ever, any Hamiltonian with two-body (possibly long-ranged)
interactions can be treated efficiently term by term.

Efficient updates. –Besides procedures for the efficient
computation of reduced density matrices, and therefore ex-
pectation values, we need a variational principle to improve
the trial states. We will focus on local variational approaches
to approximate ground states by minimizing the energy

E :=
〈ψ(A,Φ, V )|H |ψ(A,Φ, V )〉

〈ψ(A,Φ, V )|ψ(A,Φ, V )〉
, (4)

on the approximation of time evolution and on the simula-
tion of quantum circuits. The search for ground states is well
known to be related to imaginary-time evolution.

Static updates. – The MPS part can be up-
dated as in variants of DMRG [6]. The expression
〈ψ(A,Φ, V )|H |ψ(A,Φ, V )〉 is (as in MPS) a quadratic

form in each of the entries of the matricesA(k)
0 , A(k)

1 for
each sitek = 1, . . . , N . An optimal local update can there-
fore be found by means of solving generalized eigenvalue
problems with an effort ofO(D3). Local rotations can be
incorporated by parametrizing single qubit rotations on spin
k with real parametersxk ∈ R

4 as Vk =
∑4

j=1 xk,jMj

with M = (1, σz , σy , σx) being the vector of the Pauli
matrices including the identity. Again, the local varia-
tion of xk in (4) is a generalized eigenvalue problem in
xk for each sitek = 1, . . . , N . To optimize the phases
of the WGS, one may first define the new Hamiltonian
HV := (

∏N
j=1 V

(j)†
j )H(

∏N
k=1 V

(k)
k ). The optimal phase

gates between any pair of spinsj, k ∈ {1, . . . , N} can be
computed efficiently as the procedure amounts to a quadratic
function of a single variablez = eiΦj,k . To summarize,
an update of|ψ(A,Φ, V )〉 to minimize (4) corresponds to
a sweeping over such local variations, each of which is
efficiently possible, with an effort ofO(MND3) for M
sweeps. An element that is not present for MPS alone is that
one can make a choice whether one adapts an MPS part or
the adjacency matrix for an identical change in the physical
state. In practice, we have supplemented this procedure with
a gradient-based global optimization, making use of the fact
that the gradient can be explicitly computed.

We have applied the RAGE-method to proof-of-principle
1D and 2D models, where the adjacency matrix is allowed
to connect any constituents in the lattice. Fig. 1(a) shows re-
sults for the 2D Ising model with transversal magnetic field,
H =

∑

〈a,b〉 σ
(a)
z σ

(b)
z + B

∑

a σ
(a)
x , comparing the achiev-

able accuracy of MPS (using a one-dimensional path in the
2D lattice) and the RAGE-method for a fixed total number
of free parameters. The RAGE-method gives a significantly
better accuracy regarding ground state energy and two-point
correlations, already for a very small number of parameters.
For other models, we see a similar improvement of RAGE
over MPS, although in some cases (e.g., for a 2D Heisenberg
model) the overall accuracy is still not very satisfactory,pos-
sibly related to local minima encountered in the procedure.
This new class of states does allow for new features like long-
range correlations and a violation of an area law, but in turn,
breaks the localSU(2) gauge invariance. It is also clear from
the simulations that the limitation of the underlying 1D struc-
ture of the MPS cannot always be fully overcome by the graph
enhancement. The full potential in numerical performance in
identifying ground states is yet to be explored. There exist,
however, a number of interesting parent Hamiltonians where
the RAGE method should be particularly well suited, e.g., per-
turbations of models which have a WGS as an exact or ap-
proximate ground state. We mention Kitaev’s model (and per-
turbations thereof) on a hexagonal lattice which has the toric
code state – a WGS – as ground state.
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Figure 1: (a) 2D Ising model on a4×4 periodic lattice . We compare
the achievable accuracy with RAGE (red, solid) and MPS (green,
dotted) withD = 4 with exact results (blue, dashed). Two-point
correlations as function ofB are shown. The inset depicts the energy
for different total numbers of parameters andB = 2 in comparison
with the exact ground state (blue, dashed) as well as the firstexcited
state (light blue, dashed). (b) Comparison of MPS (blue, dashed)
and RAGE (red, solid) withD = 2 for the simulation of a random
quantum circuit [17] onN = 14 qubits. Application of a random
local phase gate followed by a random controlled-phase gatewith
random uniform phase in[0, 2π) constitutes one block. For givenk
we apply this blockk times to a randomly chosen initial MPS state.
500 such runs are determined, and in each the fidelity with the exact
state is computed. The average over500 realizations is then plotted.

Time evolution and simulation of quantum circuits. –We
have also considered time evolution, more specifically the
evolution of a quantum state in a quantum circuit. Here, se-
quences of elementary gates are applied, e.g., two-qubit phase
gates and arbitrary single-qubit rotations. This method can be
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easily adapted to Hamiltonian (real or imaginary) time evo-
lution. We now show how to efficiently obtain an optimal
approximation of the resulting state after the applicationof an
elementary gate. It turns out to be useful to restrict the vari-
ational family by settingV (j)

j = 1, although an extension to
arbitraryV is possible. For phase gates, this update is partic-
ularly simple, as only a change in the adjacency matrixΦ is
required. It is part of the strength of the scheme that phase
gates between arbitrary constituents are already includedin
the variational set. The update of a local unitary will require
some more attention:

Consider an initial state vector|ψ(A,Φ,1)〉, to which a sin-
gle qubit unitary operationU is applied – acting, e.g., on the
first qubit. The goal is now to find the best approximation
|ψ(A′,Φ′,1)〉 which maximizes

O :=
|〈ψ(A′,Φ′,1)|U1|ψ(A,Φ,1)〉|

2

〈ψ(A′,Φ′,1)|ψ(A′,Φ′,1)〉
. (5)

It appears natural to vary only phases that directly affect qubit
1, i.e.,Φ′

j,k = Φj,k if j 6= 1. In this case, one can rewrite (5)
in such a way that the optimal MPS partA′ can be obtained
analytically by solving a set of linear equations, while theop-
timization of a single phaseΦ′

1,k leads to a simple quadratic
form. In practice, an alternating sweeping of both kinds of
local variational methods is required. We have tested this
method for a random quantum circuit (see Fig. 1(b)) and com-
pared the achievable accuracy with MPS. Again, we obtain an
improvement due to the WGS.Extensions. –A similar con-
struction as illustrated for MPS also works for unifying WGS
with other underlying tensor network descriptions. Similarly,
one can use arbitrary clifford circuits instead of the WGS and
can still efficiently contract. More precisely, whenever anex-
act or approximate evaluation of expectation values of arbi-
trary product observables (i.e., tensor products of local opera-
tors) for a state described by a tensor network is possible, then
local observables (i.e., observables with a small support) can
be efficiently computed for the unified family of such tensor
network states and WGS (or clifford circuits), following an
approach similar as in Eq. (3). While this certainly restricts
the set of computable quantities (e.g., string-order parameters
can no longer be evaluated), it still suffices to compute expec-
tation values of alllocal Hamiltonians and hence one obtains
a variational method for a ground-state approximation or sim-
ulation of quantum circuits.

Conclusions. –To summarize, we have introduced a new
variational class of states to describe quantum many-body sys-
tems. These states have a number of desirable properties. Cor-
relation functions can be computed efficiently, systematicim-
provements of the approximation within the class are possible
and the states carry long-range correlations and violate entan-
glement area laws, as being encountered in critical systemsor
in quenched quantum systems undergoing time evolution. We
have applied the RAGE ansatz to condensed matter and quan-
tum computation problems, where we find an improvement

over MPS. From a fundamental perspective the key question
is where exactly the boundaries for the efficient classical de-
scription of quantum systems might lie. In fact, intriguingly,
the entanglement content of the state cannot be taken as an
indicator for the “complexity of a state” [18]. Delineating
this boundary will reveal more about the structure of quan-
tum mechanics from a complexity point of view and holds the
potential for new improved algorithms and methods for the
description of quantum systems.
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