125 research outputs found

    Physical activity interventions to improve daily walking activity in cancer survivors

    Get PDF
    Background Cancer patients may benefit from physical exercise programs. It is unclear, however, how sustained levels of physical activity are best achieved in this population. A systematic review was performed to summarize the current evidence of the effect of physical activity interventions on daily walking activity enhancement in cancer survivors, and to review the literature for its methodological quality. Methods A search in Medline, PEDro and the Cochrane databases was performed for English literature citations (randomized controlled trials; `RCTs`). In a first step, one reviewer abstracted data from the included studies on patients, physical activity interventions and outcomes. Two independent reviewers reviewed the methodological quality of these studies. Data were pooled using random-effects calculations. Results Our search identified 201 citations. Five RCTs that reported changes in daily step activity over time were identified, and were reviewed for methodological quality and substantive results. The median score across studies for methodological quality based on the PEDro criteria was 8. These 5 RCTs evaluated 660 participants with a mean age of 53.6 (SD 4.2) years. The mean change in daily step activity for patients with a physical exercise intervention was 526 daily steps (SD 537), with a range from -92 to 1299 daily steps. The data of three studies reporting the effect of combined physical activity and counseling on daily walking activity in breast cancer survivors were pooled, however; the I2 was 79%, indicating statistical heterogeneity between the three trials. Conclusion The 5 RCTs reviewed were of good methodological quality. Together they suggest that combined physical activity and counseling improves daily step activity in (breast) cancer survivors. Studies that define a step goal appear to be more effective in improving daily walking activity than studies that do not do so. However, the current results should be interpreted with caution because of the observed clinical and statistical heterogeneity. Future studies are warranted to evaluate the effects of goal targeted physical activity, with or without counseling, on daily walking in various cancer populations

    Moderators of Exercise Effects on Cancer-related Fatigue:A Meta-analysis of Individual Patient Data

    Get PDF
    PURPOSE: Fatigue is a common and potentially disabling symptom in patients with cancer. It can often be effectively reduced by exercise. Yet, effects of exercise interventions might differ across subgroups. We conducted a meta-analysis using individual patient data of randomized controlled trials (RCT) to investigate moderators of exercise intervention effects on cancer-related fatigue. METHODS: We used individual patient data from 31 exercise RCT worldwide, representing 4366 patients, of whom 3846 had complete fatigue data. We performed a one-step individual patient data meta-analysis, using linear mixed-effect models to analyze the effects of exercise interventions on fatigue (z score) and to identify demographic, clinical, intervention- and exercise-related moderators. Models were adjusted for baseline fatigue and included a random intercept on study level to account for clustering of patients within studies. We identified potential moderators by testing their interaction with group allocation, using a likelihood ratio test. RESULTS: Exercise interventions had statistically significant beneficial effects on fatigue (β = -0.17; 95% confidence interval [CI], -0.22 to -0.12). There was no evidence of moderation by demographic or clinical characteristics. Supervised exercise interventions had significantly larger effects on fatigue than unsupervised exercise interventions (βdifference = -0.18; 95% CI -0.28 to -0.08). Supervised interventions with a duration ≤12 wk showed larger effects on fatigue (β = -0.29; 95% CI, -0.39 to -0.20) than supervised interventions with a longer duration. CONCLUSIONS: In this individual patient data meta-analysis, we found statistically significant beneficial effects of exercise interventions on fatigue, irrespective of demographic and clinical characteristics. These findings support a role for exercise, preferably supervised exercise interventions, in clinical practice. Reasons for differential effects in duration require further exploration

    Targeting exercise interventions to patients with cancer in need:An individual patient data meta-analysis

    Get PDF
    Background: Exercise effects in cancer patients often appear modest, possibly because interventions rarely target patients most in need. This study investigated the moderator effects of baseline values on the exercise outcomes of fatigue, aerobic fitness, muscle strength, quality of life (QoL), and self-reported physical function (PF) in cancer patients during and post-treatment. Methods: Individual patient data from 34 randomized exercise trials (n = 4519) were pooled. Linear mixed-effect models were used to study moderator effects of baseline values on exercise intervention outcomes and to determine whether these moderator effects differed by intervention timing (during vs post-treatment). All statistical tests were two-sided. Results: Moderator effects of baseline fatigue and PF were consistent across intervention timing, with greater effects in patients with worse fatigue (Pinteraction = .05) and worse PF (Pinteraction = .003). Moderator effects of baseline aerobic fitness, muscle strength, and QoL differed by intervention timing. During treatment, effects on aerobic fitness were greater for patients with better baseline aerobic fitness (Pinteraction = .002). Post-treatment, effects on upper (Pinteraction < .001) and lower (Pinteraction = .01) body muscle strength and QoL (Pinteraction < .001) were greater in patients with worse baseline values. Conclusion: Although exercise should be encouraged for most cancer patients during and post-treatments, targeting specific subgroups may be especially beneficial and cost effective. For fatigue and PF, interventions during and post-treatment should target patients with high fatigue and low PF. During treatment, patients experience benefit for muscle strength and QoL regardless of baseline values; however, only patients with low baseline values benefit post-treatment. For aerobic fitness, patients with low baseline values do not appear to benefit from exercise during treatment

    Design of the EXercise Intervention after Stem cell Transplantation (EXIST) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of an individualized high intensity physical exercise program on fitness and fatigue in patients with multiple myeloma or (non-) Hodgkin's lymphoma treated with high dose chemotherapy and autologous stem cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of high-dose chemotherapy combined with autologous stem cell transplantation has improved the outcome of hematologic malignancies. Nevertheless, this treatment can cause persistent fatigue and a reduced global quality of life, role and physical function. Physical exercise interventions may be beneficial for physical fitness, fatigue and quality of life. However, the trials conducted so far to test the effects of physical exercise interventions in this group of patients were of poor to moderate methodological quality and economic evaluations are lacking. Hence there is need for a rigorous, appropriately controlled assessment of the effectiveness of exercise programs in these patients. The aims of the present study are (1) to determine the effectiveness of an individualized high intensity strength and interval training program with respect to physiological and psychological health status in patients with multiple myeloma or (non-)Hodgkin's lymphoma who have recently undergone high dose chemotherapy followed by autologous stem cell transplantation; and (2) to evaluate the cost-effectiveness of this program.</p> <p>Methods</p> <p>A multicenter, prospective, single blind randomized controlled trial will be performed. We aim to recruit 120 patients within an inclusion period of 2 years at 7 hospitals in the Netherlands. The patients will be randomly assigned to one of two groups: (1) intervention plus usual care; or (2) usual care. The intervention consists of an 18-week individualized supervised high-intensity exercise program and counselling. The primary outcomes (cardiorespiratory fitness, muscle strength and fatigue) and secondary outcomes are assessed at baseline, at completion of the intervention and at 12 months follow-up.</p> <p>Discussion</p> <p>The strengths of this study include the solid trial design with clearly defined research groups and standardized outcome measures, the inclusion of an economic evaluation and the inclusion of both resistance and endurance exercise in the intervention program.</p> <p>Trial registration</p> <p>This study is registered at the Netherlands Trial Register (NTR2341)</p

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    Effects and moderators of exercise on quality of life and physical function in patients with cancer:An individual patient data meta-analysis of 34 RCTs

    Get PDF
    This individual patient data meta-analysis aimed to evaluate the effects of exercise on quality of life (QoL) and physical function (PF) in patients with cancer, and to identify moderator effects of demographic (age, sex, marital status, education), clinical (body mass index, cancer type, presence of metastasis), intervention-related (intervention timing, delivery mode and duration, and type of control group), and exercise-related (exercise frequency, intensity, type, time) characteristics. Relevant published and unpublished studies were identified in September 2012 via PubMed, EMBASE, PsycINFO, and CINAHL, reference checking and personal communications. Principle investigators of all 69 eligible trials were requested to share IPD from their study. IPD from 34 randomised controlled trials (n=4,519 patients) that evaluated the effects of exercise compared to a usual care, wait-list or attention control group on QoL and PF in adult patients with cancer were retrieved and pooled. Linear mixed-effect models were used to evaluate the effects of the exercise on post-intervention outcome values (z-score) adjusting for baseline values. Moderator effects were studies by testing interactions. Exercise significantly improved QoL (β=0.15, 95%CI=0.10;0.20) and PF (β=0.18,95%CI=0.13;0.23). The effects were not moderated by demographic, clinical or exercise characteristics. Effects on QoL (βdifference_in_effect=0.13, 95%CI=0.03;0.22) and PF (βdifference_in_effect=0.10, 95%CI=0.01;0.20) were significantly larger for supervised than unsupervised interventions. In conclusion, exercise, and particularly supervised exercise, effectively improves QoL and PF in patients with cancer with different demographic and clinical characteristics during and following treatment. Although effect sizes are small, there is consistent empirical evidence to support implementation of exercise as part of cancer care
    corecore