810 research outputs found

    Nonlinear aspects of the EEG during sleep in children

    Get PDF
    Electroencephalograph (EEG) analysis enables the neuronal behavior of a section of the brain to be examined. If the behavior is nonlinear then nonlinear tools can be used to glean information on brain behavior, and aid in the diagnosis of sleep abnormalities such as obstructive sleep apnea syndrome (OSAS). In this paper the sleep EEGs of a set of normal and mild OSAS children are evaluated for nonlinear behaviour. We consider how the behaviour of the brain changes with sleep stage and between normal and OSAS children.Comment: 9 pages, 2 figures, 4 table

    Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Get PDF
    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements

    Exceptional uranium(VI)-nitride triple bond covalency from <sup>15</sup>N nuclear magnetic resonance spectroscopy and quantum chemical analysis.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-09-01, epub 2021-09-24Publication status: PublishedFunder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); Grant(s): EP/M027015/1, EP/K024000/1, EP/S033181/1Funder: European Research Council; Grant(s): 612724Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies

    Cardiometabolic Risk Factors, Metabolic Syndrome and Pre-Diabetes in Adolescents in the Sierra Region of Ecuador

    Get PDF
    Background: Excess weight (overweight and obesity) is the major modifiable risk factor for type 2 diabetes mellitus (T2DM) and other non-communicable diseases. However, excess weight may not be as predictive of diabetes risk as once thought. While excess weight and other obesity-related non-communicable diseases are of growing concern in low-middle income countries in Latin America, there is limited research on risk factors associated with T2DM in adolescents. This study investigated prevalence of overweight, obesity, prediabetes, diabetes and metabolic syndrome in adolescents in Ecuador. Methods: A cross-sectional study was conducted with 433 adolescents from two schools in a small urban center in southern Ecuador and two schools in a large urban center in Quito. Risk factors were measured, including: height, weight, BMI, waist-to-hip ratio, fasting glucose, lipid panel, and HbA1c. Multivariate analysis of variance (MANOVA) was separately applied to risk factors and demographic factors as a set of dependent variables with sex, location and their interaction included as predictors. An independent t test was run on the data at 95% confidence intervals for the mean difference. The values for the triglycerides, LDL and VLDL were positively skewed. A Mann–Whitney U test was run on these data. Results: Using IOTF standards, 9.8% were overweight and 1.9% were obese. Only 1.6% of the sample met the criteria for prediabetes by fasting glucose but 12.4% of the sample met the criteria for prediabetes by HbA1c. None of the participants met criteria for diabetes. There were 2.3% of the participants that met the IDF criteria for metabolic syndrome. Adolescents from the larger urban center had higher rates of prediabetes, higher mean HbA1c, blood pressure, lipid values, and lower HDL levels. Conclusions: Use of HbA1c identifed more adolescents with prediabetes than FBG. The HbA1c measure is an attractive screening tool for prediabetes in developing countries. Although rates of obesity in Ecuadorian adolescents are low there is significant evidence to suggest that prediabetes is permeating the smaller urban centers. Traditional screening tools may underestimate this risk

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Global Equation of State of two-dimensional hard sphere systems

    Full text link
    Hard sphere systems in two dimensions are examined for arbitrary density. Simulation results are compared to the theoretical predictions for both the low and the high density limit, where the system is either disordered or ordered, respectively. The pressure in the system increases with the density, except for an intermediate range of volume fractions 0.65ν0.750.65 \le \nu \le 0.75, where a disorder-order phase transition occurs. The proposed {\em global equation of state} (which describes the pressure {\em for all densities}) is applied to the situation of an extremely dense hard sphere gas in a gravitational field and shows reasonable agreement with both experimental and numerical data.Comment: 4 pages, 2 figure
    corecore