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We investigate the efFective conductivity (o.,) of a class of amorphous media defined by the
level cut of a Gaussian random field. The three point solid-solid correlation function is derived and
utilized in the evaluation of the Beran-Milton bounds. Simulations are used to calculate o for a
variety of fields and volume fractions at several diferent conductivity contrasts. Relatively large
di8erences in o are observed between the Gaussian media and the identical overlapping sphere
model used previously as a "model" amorphous medium. In contrast, o shows little variability
between di8'erent Gaussian media.
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I. INTR.ODU CTION

The calculation of the effective transport properties of
random composite media is important in many scientific
and engineering applications [1]. Several techniques (ef-
fective medium approximations and cluster expansions)
have been developed for predicting the effective proper-
ties of such materials (briefly reviewed in Ref. [2]). How-
ever, difIiculties encountered in such methods have pro-
vided the impetus for the development of rigorous bounds
[3—8]. Such bounds rely on statistical descriptions of the
microstructure of the material which are available for rel-
atively few classes of media. The advancement of com-
puting technology [9—12] has also made direct simula-
tion of effective properties feasible. It is the latter two
approaches which we shall discuss here, in the context
of the efFective conductivity of a three dimensional (3D)
amorphous isotropic two phase material.

There have been significant advances in the evalua-
tion of the Beran-Milton [4,7] (BM) bounds in the past
decade. The key parameter (i (or (2 ——1 —(i) which
incorporates microstructural information regarding the
composite has been evaluated primarily for materials
comprised of statistically independent cells [13,14] or dis-
persions of regularly shaped inclusions [15,16,2,17]. The
simulation of the effective conductivity of continuum ran-
dom media is a computationally intensive process and has
only recently been studied for the second class of materi-
als [10,11]. Such an approach provides a basis for testing
the bounding theories and for generating outright predic-
tions of the efFective properties of composites.

A class of materials which is not, in general, well de-
scribed by cellular or particulate models is that of amor-
phous composites. Such materials arise in certain alloys
[18,19], microemulsions [20,21], and other systems [22].
The model which best captures some of the salient fea-
tures of such composites is the spatially uncorrelated pen-

etrable sphere (or the identical overlapping sphere) model
[23]. Due to the simplicity in evaluating the statistical
correlation functions of such a material it has served as
a useful "model" amorphous medium [24,15,25]. How-
ever, specific features of this model restrict its general-
ity. The inclusion (sphere) phase and the inatrix phase
are topologically very different, the small scale structure
of the phase boundaries is spherical, and there are no
long range correlations in the model. An alternative ap-
proach is to empirically measure the specific correlation
functions of a sample and to apply the results in the eval-
uation of bounds [26,18,27,28]. This approach is compli-
cated and subject to error. It is therefore interesting to
seek a more complex model of amorphous composites,
yet simple enough so that the correlation functions can
be calculated.

Another method of modeling random composites is to
define the interface between the phases as a level cut of
some random field [29—33] (see Ref. [34] for a review). Re-
cent progress [35—37] in the theory of interfaces of level-
cut Gaussian random fields has made it possible to cal-
culate the statistical information necessary for the eval-
uation of the BM bounds. There is evidence that the
Gaussian random interface model is a good approxima-
tion to certain oil-water microemulsions [38,39,21] and we
conjecture that it is a reasonable model for amorphous
alloys.

In this paper we investigate the effective conductivity
of such media using the above mentioned bounding tech-
niques and computer simulations. The results are com-
pared with the previously studied models to demonstrate
the differences that arise. The paper is organized as fol-
lows. In Sec. II we describe the equations governing the
electric field in a composite medium and the bounds on
the effective conductivity. In Secs. III and IV we derive
the statistical correlation functions for the random media
and apply them in the calculation of the microstructure
parameter. Sections V—VII are concerned with the gen-
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II. BOUNDS GN THE EFFECTIVE PB.GPERTIES
OF COMPOSITE MATERIALS

The relationship between the current density j and the
electric field E = —V'P is given by Ohzns law,

j = crV—Q, (2.1)

where, due to charge conservation, P satisfies

(2.2)

throughout the material. At the boundary of different
regions of the material with conductivities oq and o.2 we
have

cri V'pi ii = 02Vp. 2 .'n. (2.3)

eration of the random materials, the simulation of the
effective conductivity, and comparison of the data with
the bounds.

19 j d j d j
„~~„(„,,)

p2(&)»(s)
&~

p

1 + (1 + 2p)Pi2 —2(q(i —p)Pi22

1+qP» —(2q(i + p)P'
(2.8)

where t = r2 + s2 —2rsu and P2(u) = (3u —1)/2 is
the I.egendre polynomial of order 2. The functions p
are n-point solid-solid correlation functions (see Sec. III)
where the "solid" is phase 1 and the "void" is phase 2.

As Milton notes these bounds converge when (i
0, 1 and are equal to one of the second order Hashin-
Sthrikman bounds in each case. An improved lower
bound has been derived by Milton [8] for the case crq )
Oq. In later sections we consider materials with oq ) o2
for which this bound is (see Ref. [11]),by interchanging
the roles of the materials,

(~~&)
(~&)

(2.4)

The effective conductivity is defined by a macroscopic
form of Ohm's law,

where Pi2 = (o i —o 2)/(a i + 2o 2). By way of mathemat-
ical analogy these bounds also apply to the effective di-
electric, diffusion and magnetic permeability coeKcients
of composite materials.

2pq(~, ' —~, ')'
(2.5)

Now consider a composite material made up of two com-
ponents with conductivities o.i and o2 with volume &ac-
tions p and q = 1—p. The effective conductivity will then
depend on the 0.;, their respective volume &actions, and
the spatial distribution (microstructure) of each phase
[40].

The first bounds on 0, were calculated by Wiener [41]
who proved that (0' i) ( 0, ( (0}.These bounds as-
sume no details about the microstructure and are hence
valid for a general composite. As more statistical infor-
mation regarding the composite is included in the calcu-
lation of the bounds they become more restrictive. If the
sample is assumed to be isotropic and macroscopically
homogeneous then the second order bounds of Hashin
and Sthrikman [3] are applicable. To distinguish between
such materials the third order bounds of Beran are nec-
essary. [The term nth order bounds refers to the fact
that the bounds are exact to O(oi —o2) .] The Beran [4]
bounds were derived using variational principles and were
subsequently simplified by Milton [7]. Following the no-
tation of Milton we define (a) = pai+qa2, (a) = qai+pa2
(interchanging p and q), and (a)q = (iai + (2a2. Here
a; = cr; or 1/0;. In these terms the lower bound on o, is

III. CGB.RELATION FUNCTIONS FGB. THE
CAUSSIAN RANDOM INTERFACE MODEL

There is an extensive literature on the calculation of
statistical correlation functions [1]. The case of the three
point solid-solid correlation function has been consid-
ered empirically [26,18,42,43], and theoretically for cellu-
lar materials [13,44] and spherical inclusions [23,15,16,45]
to name a few. Here we take the interface between the
phases to be deBned by a level cut of a random Beld
[29,31]. Now consider a Gaussian random field y(r)
[46,34] (see Sec. V) and let the level sets y(r) = n de-
fine the interface (with the region y ) n being phase
1). Then the n point correlation function is given by the
volume average,

p-(»» " r-) = (~(» —n) ".II(y- —n)) (31)

where H(y) is the Heaviside function and y; = y(r;).
p is then the probability that the n points will lie in
phase 1. For a macroscopically homogeneous isotropic
material p only depends on the distances r;~ = ~r, —r~

~

between the points. Since volume and ensemble averages
are equivalent in such a medium [40] we can use the latter
to evaluate Eq. (3.1). The joint probability density of y;
is

while the upper bound is

pq(o. i —o.2)
(~) + 2(~)~

(2.6)

1
P„(yiy2.. .y„)= exp( —2y G y), (3.2)

(2m)" iGi

where the elements of G are g,~
= (y, y~) [46]. The latter

quantity we refer to as the Geld-Geld correlation function,
The so called microstructure parameter (i is given by a
number of equivalent integrals [4,7,14], of which the for-
mulation due to Brown [40] is the best for our purposes,

(3.3)
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where p(k) is the spectral density of the field.
Berk [35,37] and Teubner [36] have derived the one

point function (volume fraction),

—= —e ~ —(k2).
V ~ 3 (3.12)

1
p = exp( —2t )dt

2 7t
(3 4)

and the two point function,

1 " ( n ) dt
p2(gv) = — exp

I

—
I

+ p' (3 5)2~ o 4 1+ t 1 t2

(exp(iy w)) = exp( —2w Gw) (3.6)

The three point function is calculated using the tech-
niques described in Ref. [36]. The following identities are
used [46]:

T

P123 ~ g12g13 + g12g23 + g13g23-

(3.13)

(3.14)

As the evaluation of the integrals in Eqs. (3.5) and
(3.11) is computationally intensive it is useful to derive
various approximations. Rigorous approximations for p2
for the cases Inl (( 1 and Ial )) 1 are derived in Ap-
pendix A. A useful nonrigorous approximation to @123
can be developed by requiring that the approximation
have similar properties to the actual function for r,~ )) 1
and satisfy the known consistency conditions in various
limits [40]. Using the compact notation p, . = p2(g;i) —p
and p; I,

——ps (g,~, g,~, g~i, ) we have (r;~ )) 1)

~( )
1 'm(y ~) d~—

2KZ
(3.7)

Using this information, and including a higher order term
for consistency [ps(r12, r12, 0) = p2(r12)], we construct

where the contour C is directed along the real axis except
near the origin where it crosses the imaginary axis in the
upper half plane. This leads (after algebra) to

C)P3 ~P2(gi2)
~g12 %12 /27r

(3 8)

where

V 1 g» 1+gi2 —gis —g2s
v'I+ g»

(3.9)

1

p3 (g12& g131 g23) g12 A12 (tg121 tg131 tg23)dtT
0

+gi3 13(tg12 ~ tg131 tg23) dt

+g23 +23 (tg121 tg131 tg23)dt.

(3.10)

The truncated three point correlation function p is re-
lated to the p3 by the expression

P3(g12) g13) g23) Ps (g12& g13) g23) + PP2(g12)
T

+pp2(gis) + pp2(g23) —2p'.
(3.11)

To examine the limit r12 -+ 0 (g12 ~ 1, g23 M gis)
set f (gis) = ps (1,gis, gis) then df (gis)/dgis ——(1—
2p)dp2(gis)/dgis and f(0) = 0 implying ps (1,gis gjs) =
(1 —2p) [p2(gis) —p2] as it should. (Similarly in the other
limits. ) The x-ray spectra of these materials can be cal-
culated from p2 [22,20,37] and hence they can be related
to physical composites. Furthermore it has been shown
that the surface to volume ratio is given by [22,36]

and
I Gl = 1 —g12 —gis —g23+ 2g12g13g23. Similar expres-

sions can be derived for c)ps /c)gis and Ops /c)g23. Defin-
ing A;~ = Ops /Bg;z we have therefore

T 1 —2P /TT TT TT
+123 2 ~ 1 ~ LJ 12~13 + ~12~23 + I 13+232pL'1 —p) '

TTT
2 (1 — )P ( P)

(3.15)

We note that this approximation has a maximum abso-
lute error of O(10 ) for the materials considered here.
As such it is an order of magnitude better than a pre-
viously suggested approximation [47] ps(r12, ris, r23) =
p2(u)p2(v)/p where u and v are the smallest, and next to
smallest, values of r12, r13, and r23.

IV'. DETERMINATION OF gi

Actual calculations of the microstructural parameter
(1 [Eq. (2.7)] have, to date, been for four classes of ma-
terials. Cellular materials [13,14], empirically measured
physical composites [28], periodic arrays of spheres [48],
and materials with spherical inclusions. In the latter class
the cases studied include identical overlapping spheres
[15,16] (the IOS model), identical hard spheres [49], and
polydispersed spheres [25,2] (many of these results are
summarized in Ref. [1]).

We now describe aspects of the computation of gi for
several spectra of the Gaussian random interface (GRI)
model. It can be shown that (1 ——

2 for p =
2 [13,44, 14]

(see Appendix B) and that (1 ——1 —(2 where $2 is the
microstructure parameter associated with phase 2. As (1
is dimensionless it must depend only on the ratios of the
length scales associated with the spatial variables in the
(dimensionless) correlation functions. That this should
be so also follows &om a simple dimensional analysis
of the equations governing the electric field (no physical
length scale is present). Henceforth we scale all spatial
variables against a characteristic decay length without
loss of generality.

We consider three types of media generated &om
Gaussian random 6elds. The Geld-Geld correlation func-
tions and their corresponding spectra are as follows.
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Model I:

„sinvp

vp

p(k) = vr
' (1 —v'+ k')' + 4v'

{4.1)

(4.2)

g(r) = e (4.3)

Here v = 2vrli/t2 with /i the decay length of the field
and l2 the characteristic domain size. When r &) 0 the
correlation functions arising &om this model are similar
to those considered in Refs. [22] (v = 0) and [20] (v ) 0).
Note that this model has an infinite surface to volume
ratio since (k ) diverges, however for computational re-
alizations of the model the ratio is finite (see Sec. V) and
the model is well de6ned. However, it is interesting to
study (i for this model to investigate the effect of inter-
facial roughness on efkctive properties.
Model II:

icant figure in the estimation of (i remained constant.
The integration method was tested on the known corre-
lation functions for the IOS model [23,15]. The results
are in exact agreement (to the reported third significant
figure) with those of Torquato and Stell [1,15] and agree
to the second significant figure with the results of Berry-
man [16]. The calculation of the correlation functions
in the integrand is done using a combination of iterative
quadrature rules [50], the asymptotic results presented in
Appendix A and the nonrigorous approximation for the
truncated three point function (3.15). The latter is used
whenever 1—g & 10 since in this case the functions E;~
exhibit large derivatives and the quadrature rules con-
verge too slowly. The accuracy sought in the application
of each approximation is O(10 ).

The results for each of the models is presented in Table
I and plotted in Fig. 1 along side the results for the IOS
model. Several comments on the qualitative relationship
between (i for the GRI model and prior calculations can
be made. Consider the expansion

Model III. (, =) e;p'. (4.10)

3 (sin pr —pr cos pr —sin r —r cos r)
g(r) = —,

( 1)

p(k) =
4 , , [II(p) —II(I)1

(4 5)

(4 6)

I(m, P, u) dm dP
~

P2 (u) du (4.7)
r—i 0 0

with

where p, = ki/ko. Note that p(k) -+ h(k) as p, -+ 1 and
the simple model used by Berk [35] is recovered.

To perform the integration (2.7) we use cylindrical co-
ordinates (which damp the singularity at the origin), in-

terchange the order of integration, and exploit the r —8

symmetry to give

For a general class of materials with spherical inclusions it
has been shown that eo ——0 [17,2]. If the inverse of these
materials is considered (so that the correlation functions
refer to the material surrounding the inclusion) or el-
lipsoidal inclusions are considered [17] then ep ) 0 (see
Appendix C). For the case of symmetric cell materials
eo ——M C [0, 1] where M = 0 for spherical cells and
M = 1 for platelike cells [7,13]. Another interesting fea-
ture of (i is that it is observed to be linear with p over
a wide range [1,2]. Indeed for the symmetric cell model
ei ——(1 —2M) and e2, es . ——0. By inspection of Fig.
1 we see that eo & 0 in qualitative agreement with the
results for nonspherical inclusions which will occur in the
GRI models. Also note that (i is very similar to the re-
sults for the symmetric cell model for some 0 ( M & 1

p J.(r s t) —»(r)»(s)
psis sin icos p

(4.S)

To elucidate the nature of the singularity in the integrand
at io = P = 0 we consider tv, P (and hence r, s, and t)
to be small and assume the form g(r) 1 —ar (where
n = 1, 2 in accord with models I—III). Now for p =

2 the
numerator of the expression for I is given by

sin ' (g(t)) sin (g(r)) sin (g(s))
8~ 4' 2

(4.9)

where we have used the results sin (g(r)) —
2

—/2ar
r = is cos P, s = is sinP, and t = ivy/I —sin 2$u. There-
fore I(m, g, u) (is/) 2 with p =

2 and numerical

analysis shows this scaling also holds for p g 2. An in-
tegration rule which takes the singularity into account
is employed. Note that for 6.nite surface area to volume
ratios n = 2. The number of abscissae in each of three
integration ranges was increased until the third signif-

TABLE I. The microstructure parameter (i for various
GRI models. Prior results for the identical overlapping sphere
(IOS) model [1,15] and the symmetric spherical cell (SSC)
model [13,7] are included for purposes of comparison.

Prior Results GRI madel

p SSC IOS I v=0 I v=10 II III p, =1.5
0.01 0.01 0.269 0.193 0.099 0.060
0.05 0.05 0.293 0.217 0.160 0.105
0.1 0.1 0.056 0.319 0.248 0.210 0.150
0.2 0.2 0.114 0.366 0.309 0.291 0.237
0.3 0.3 0.171 0.411 0.372 0.363 0.324
0.4 0.4 0.230 0.456 0.436 0.432 0.411
0.5 0.5 0.290 0.500 0.500 0.500 0.500
0.6 0.6 0.351 0.544 0.564 0.568 0.588
0.7 0.7 0.415 0.589 0.628 0.636 0.675
0.8 0.8 0.483 0.634 0.691 0.709 0.763
0.9 0.9 0.558 0.681 0.752 0.790 0.850
0.95 0.95 0.604 0.707 0.783 0.840 0.895
0.99 0.99 0.658 0.731 0.807 0.901 0.940
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With c)mn ——a)mn + ib)mn, a) „and b)mn are random
independent variables (subject to the conditions on c~ „)
with Gaussian distributions such that (a~ ) = (b~ ) =
0 and

0.4

1 2vr )
(u'-") = (&'-") = s' (k~ ") T2

(5 3)

..~ r, r
0.2-"

.r'
~ r with p~(k) the spectral density. The field-field correlation

function g~ is given by

0.0
0.0 0.2 0.4 0.6 0.8 1.0 y (r») = (y (»)y (»)) (5.4)

FIG. 1. The microstructure parameter (i vs p for the GRI
models [Eqs. (4.1)—(4.6)] and the IOS model [1,15].

N N N

lmnlmn &

—N —N —N

K
4.k, (k)" "["

(5.5)

(5.6)

over a wide range of p. This discussion demonstrates
the success of simple models of random media to capture
the qualitative features of (i for the amorphous materials
considered here.

Calculations of the related microstructure parameter
g~ which arises in bounds on the elastic properties of
random composites are reported in Appendix E.

The last integral is obtained by taking N and T large,
using Eq. (5.3) and recognizing that the summation is
the approximation of a triple integral. Following a trans-
formation to spherical coordinates we integrate over the
angular variables to obtain (5.6). Since g~(0) = 1 we
de6ne

V. CENEKATION OF FIELDS
p (k) = P 'p(k), P = 4vrk p(k)dk,

0
(5.7)

For computational purposes we consider a T-periodic
Gaussian random field [46] with a maximum wave num-
ber K = 2vrN/T,

N N N

y-(r) = ) ) ). c~-""'
I,=—N m= —N n= —N

(5 1)

where

2~ .
k) „=—(li + mj + nk).T (5 2)

For y~ real we require c~ = c ~ and as (y~) =
0 we set c000 ——0. For reasons which become clear
below we also take c~~„=0 for k~~„——[k~~„[& K.

where the p(k) are defined in Sec. III. If in addition we
take K ~ oo then the conventional correlation function
(and spectral density) are recovered. The Fourier ex-
pansion (5.1) is evaluated using a fast Fourier transform
(FFT)

Consider materials derived f'rom the field y» [Eq. (5.1)]
as discussed in Sec. III. Cross sections of the media
for four diferent variants of the models are plotted in
Figs. 2(a)—2(d). The large scale structure of the inter-
face is determined by the terms in the expansion with
small k while the small scale structure (ripples on the
surface) are determined by the terms where k is large.
A physical material will naturally contain a finite cutoK
wavelength either imposed by the molecular size or by
the manifestation of surface tension at the phase bound-
aries. This wavelength will then dictate the grid res-

aP

aI L

C~~ p a~
(a) I:v=O, K=1S, T=4n

I ~ '

1

+) C
4

(e) I:v=O, K=S, T=4n

(b) I:v=10, K=18, T=4II

r~
~l

4

(f) I: v=lO, K=32, T=z

o
(c) II: K=18, T=4II

L o
(g) II: K=S, T=4~

I I[i

(d) III: p.=1.5, T=4m

(h) III: p.=1.5, T=S~

FIG. 2. Crass sections of the models gen-
erated at the same scale (a)—(d) and at the
scale to be used in the simulations (e)—(h).
The volume fraction p = 0.5 and each of the
fields are generated using the same random
number seed to clearly show the di8erences
among the models. The parameters v, p, T,
and K are discussed in the text.
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TABLE III. T
e

. T e microstructure param t fe er l, i or the com-
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„.he maximum wave number in the Fo
(g(p) = 1 —
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q p = 1 —gq(l —p) can be used to determine ( fe y or p 1 2.
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erence scheme is used to approximate the field
sing a conjugate gradient (CG) method. In

a e e e and

Appendix D we discuss the efEcient l
the al oe a gorithm on a parallel computer. The z corn onents
of the current and the field

he convergence criterion of the
CG '

i e ir significant figureCG so ver is decreased until the th' d
o (o. )M remained constant. To estimate the
value of o. we ass

ima e e continuum

a line usin least
e e i an

M i The
g eas squares) to several values f ~

e intercept of this line with the axis M = 0
then provides o

Before proceeding to the rang e random media we simulate
e e ective conductivity of a regular arra of s h

y o i —— 0 in a matrix of conductivit o = 1
Exact results for

orithms.gont ms. or computational purposes theses e array contains

o b les
our sp eres in the z direction (using h hsix sp eres changes

es o &o jM or increasing
concentration are plotted alon th th lng wi e ines of best fit
used to estimate cr, in Fi . 6. T
the necess'

ig. . The graph demonstrates
e necessity of extrapolating the data to M

The results for o.ts for o. are presented in Table IV. The erro
ar p .4 but increases to around 3%%u

at p = 0.5 near th e percolation threshold p = 0.52. For
0

the random media it was found th t ' &,~M aa computing &o.,~ M at
more than two values of M d'd
estimation of o

~ ~

o i not significantly alter th e

FIG. 6. TThe calculated values of (oo, M so | circles) forld
varying volume fraction (p) and the ex de exact ata (open circles)

or the regular array of spheres. M is the dis. is t e iscretization
e. e ines are linear leastin e nite difference scheme. Th l

squares ts of the data over the ran e of M hrange o where the data
are approximately linear (generally M ( 0.01

iven b th
16 . 0 is then

g y e intercept of the lines with the axis M = 0

TABLE IV. Com aomparison of the extrapolated finite differ-
ence simulations with the exact results 53 fesu s or a simple cubic

y o spheres of conductivity o.i ——10 in a matrix
e rownian motion simulations of Kim

an t e simulations of Bonnecaze and Brad
12j are also included. The

an ra y
e . e spheres touch at p = 7r/6 0.52.

Exact
p Results

0.1 1.24
0.2 1.53
0.3 1.89
0.4 2.36
0.5 3.11

Finite Diff.
This work

1.25
1.52
1.90
2 ~ 37
3.19

Relative
Error
0.8+p
0.7'Fo

o.570
0.4+p
2.6'FO

Kim-
Torquato

1.24
1.53
1.89
2.36
3.13

Bonnecaze-
Brady
1.24
1.53
1.87
2.29
2.80

For t e random media we m tus consi er ow to as-
sign the conductivity of a bond l in bon ying etween two nodes

spective values of the field and than e con uctivity at two

~ ~

suc neig oring nodes. There are thr b 're ee o vious ways of
determining o,z. Defining a = o. —

e rr;~ = ao~ + (I —a)o', (as if the portions af the vol-
ume element associated with th b d '

si e on are like conductors

(a simple field average) In F . 7 hn ig. we show the e6'ect of
using these rules for two sam
wi = 4 16. Fo

samp es of material I generated
For a given discretization M a I

difference in o occur
n a arge

, occurs depending on the rule emplo ed.
However, extrapolation t M = mo = Odem

y, or a given volume fraction we

leve
use t e bisection method to calcul t th la e e va ue of the
evel cut parameter o.' such thata o = poq + qo2 (where
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4.40

4.30

4.20
a.

4.10

4.00

1.02—

1.00

0.98

K=8

, K=32

0.96

3.80 I I I I I I 1 I I I I I

0.000 0.010 0.020 0.030 0.0 0.2 04 0.6 0.8 1.0

FIG. 7. The values of (o,)~ for sample Gaussian media
using the three di8'erent rules for assigning a conductivity to
each bond (see text). Note that large variations in (o, )M oc-
cur for given M if difFerent rules are employed. However, the
choice is seen to be immaterial when the data are extrapolated
toM 'm0.

FIG. 8. The data for four diferent GRI models with con-
ductivities 0 q ——10 and o q

——1. The data are normalized
against the BM upper bound [Eq. (2.6)] with (i ——p to high-
light the difFerences between the models. The curves are
spline fits of the data.

() refers to bond averaging). This substantially reduces
the statistical Buctuations in 0., compared to using the
theoretical value of n determined f'rom Eq. (3.4).

VII. SIMULATION RESULTS

We simulate the effective conductivity for the four GRI
models listed in Table II for a range compositions. As we
are dealing with finite sized samples we report 0, as the
average over a number of diferent realizations of the ma-
terials. Error bars, which represent 95fp confidence limits
on the results, are equal to twice the standard error. The
samples are examined at three diferent contrast values:

TABLE V. Simulations of 0 for diferent GRI models
with cri q = 10, 1. The data for the IOS model [11] are in-
cluded for purposes of comparison. The notation x(y) implies
cr, = x + y x 10 with the error bars defined as 95% confi-
dence limits. y = 0 implies y ( 0.5.

o.
q 2 ——10, 1, o.

q 2 ——50, 1, and O.
q 2

——1, 0. Previous au-
thors [10,11,54] have considered media with o i 2

——oo, 1
but this is not possible using the methods discussed here.

The results for the case oq 2 ——10, 1 are presented in
Table V and plotted in Fig. 8 for p E [0.1,0.9]. To obtain
the data five samples of each model with discretizations
using M = 64 and M = 96 were considered. The re-
sults show little variation in o, (for fixed p) among the
four diferent media. The maximum relative difference of
4.2'%%up occurs at p = 0.6 between cr, for model I (v = 0,
It = 8) and model III (p, = 1.5). As the differences are
relatively small we restrict further attention to the latter
two materials. The bounds calculated &om Eqs. (2.6)
and (2.8) using (i &om Tables I and III are presented in
Table VI and plotted along with the simulation data in
Fig. 9, for p 6 [0.2, 0.8], and Fig. 10 for p C [0.86, 0.96].
The latter figure illustrates very clearly that the upper
bound discriminates between model I and III.

For the case cri 2 ——50, 1 the results for model I (v = 0,
K = 8) and model III (p = 1.5) are reported in Table
VII and plotted along with relevant bounds in Fig. 11.

p
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.86
0.88
0.90
0.92
0.94
0.96

I v=O
K=8
1.36(1)
1.84(2)
2.45(4)
3.19(5)
4.06(6)
5.03(6)
6.12(6)
7.33(4)
8.13(3)
8.39(3)
8.65(2)
8.91(2)
9.18(2)
9.45(1)

I v = 10
K = 32
1.33(1)
1.80(2)
2.43(2)
3.21(3)
4.12(3)
5.12(2)
6.23(1)
7.41(1)

II
K=8
1.35(1)
1.85(2)
2.49(2)
3.24(3)
4.12(2)
5.10(2)
6.20(l)
7.39(1)

8.68(0) 8.67(2)

III p = 1.5

1.33(1)
1.82(3)
2.47(3)
3.28(4)
4.21(4)
5.24(6)
6.33(6)
7.50(4)
8.20(4)
8.46(4)
8.71(3)
8.97(3)
9.22(2)
9.48(1)

IOS

1.64

2.73

4.63

7.11

p
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

I K=8, v
O~

1.290
1.660
2.123
2.702
3.423
4.316
5.414
6.742
8.302

=0

1.437
1.994
2.654
3.414
4.273
5.229
6.283
7.434
8.677

O~

1.268
1.618
2.073
2.663
3.423
4.385
5.570
6.961
8.490

p = 1.5
O~

1.372
1.905
2.576
3.371
4.273
5.269
6.348
7.501
8.720

TABLE VI. An example of the bounds calculated using
Eqs. (2.6) and (2.8) and the data in Tables III (model I) and
I (model III). The conductivity contrast is cri 2 = 10, l.
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TABLE VII. Simulations of cr, for the different Gaussian
random media with o.q ——50 and O.q ——1. The IOS model
data are from Ref. [11].The error bars define 95% confidence
limits.

0.1
0.2
0.4
0.6
0.8

Iv=0, K=8
1.88+0.08
3.68+0.2
10.4+0.5
21.0+0.4
34.4+0.4

III p = 1.5
1.69+0.06
3.45+0.2
11.1+0.3
22.5+0.3
35.6+0.2

IOS

2.16
6.44
15.2
30.7

0.20 0.30 0.40 0.50 0.60 0.70 0.80
P

FIG. 9. Simulations and bounds for the effective conduc-
tivity of two models of random composite media generated
from the GRI model for the case oq, 2

——10, 1. The circular
symbols represent data for the IOS model calculated by Kim
and Torquato [11] and the bounds for the 1OS model were
evaluated by Torquato and Stell [15].

Again five samples of the media were considered with
M = 64 and M = 96. Figure 11 shows very pronounced
difFerences between the IOS model and GRI models. The
results for the case o q 2 ——1, 0 are given in Table VIII and
plotted along with the upper bound (the lower bound
vanishes) in Fig. 12. Five samples at discretizations M =
48 and M = 64 were considered.

There are several qualitative trends in the data which
can be commented on. Note that for the first two con-
trasts considered 0., of the GRI models is greater than
that of the IOS model over the entire range of p. At
low volume fractions this can be attributed to the fact

that the inclusions of the GRI models are qualitatively
less spherical than those of the IOS model (see Appendix
C). This can be clearly seen in Figs. 13 and 14 where
the inclusions are plotted for each of the GRI models
at p = 0.07 (the IOS model will contain predominantly
spherical inclusions at this volume fraction). At high vol-
ume fractions the situation is reversed; the matrix phase
of the IOS model is extremely ramified and hence o, is
lower. Similarly near p = 0, 1 the small differences in o,
for models I and III can be explained by the fact that
the latter model has more spherical inclusions (compare
Figs. 13 and 14). This behavior is consistent with the
relative variations in (i for each of the three models as
discussed in Appendix C. For midrange p the differences
between the IOS and GRI models correspond to the fact
that the more highly conducting regions of the latter are
generally better connected than those of the IOS model.
Again this difference can be anticipated Rom the relative
behavior of the parameter (i for the two classes of mod-
els. However, this is not necessarily always so as can be
seen by comparing the respective values of (i (Tables I
and III) and 0, (Table V) for models I and III at p = 0.4.
In this case o.r ( 01 1 but g1 & (nr

Note that the simulation data for the IOS model in the
case o.

q 2 ——1,0 were obtained for insulating spheres in
a matrix of unit conductivity. Therefore the microstruc-
ture of the conducting phase is generally better connected

9.4—

9.2—

a.
9.0—

8.8—
30

8.6—

8.4—
20

8.2—

0.86 0.88 0.90 0.92 0.94 0.96
l0

FIG. 10. Simulations and bounds for the effective conduc-
tivity of two models of randoxn composite media generated
from the GRI model for the case o~,q ——10, 1. The upper
bound discriminates between the models in this range of p.

0.2 0.4 0.6 0.8

FIG. 11. As in Fig. 9 except or~ ——50 and o.2 ——1.
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TABLE VIII. Simula 'imulation of cr f n ausor difFere t G

e . [11]. The n
e error bars de6ned n

~ ~

e ned n ence limits's. y=0

p
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

I, v=O, K
o.oo2(2)
0.027(6)
0.080(3)
0.166(12)
0.264(10)
0.383(9)
0.521(12)
0.670(7)
0.830(3)

III p = 1.5
0.000(0)
o.o25(2)
0.092(6)
0.185(10)
0.294(12)
0.420(11)
0.553(6)
0.697(7)
0.847(2)

IOS
0.022
0.076
0.160
0.248
0.346
0.461
0.593
0.714
0.855

than the GRI mmodels and the ar
a ove are reversed.

e ap-

l ofb d
goo d coIl

ounds in t

see Fi
d rmation of th

d
' t ese region d

( ig. 10 especiall '.
iques used in th rls paper

e ave calculated the er

lt. [3Vas o r '
s 1& ere found p~ to exh b

the spectrum. Avo epend on
ex I it Gnite

and extrapolatln

o eoretical percolation r e Iion results for the GRI 'se I model it is
es o in terms of th e tran-

sition of the structures fro
' '

o
~

h
yp o s

models is giiven y [36]
sslan curvature K efor the

(7.1)(It~) = —(k')(n' —1 .

Therefore thehe nature of th e lnterfaCo e is dominated by

d l hvvp b (. .g.) 1 indicat th nes at co

ion m 0', (and
ss e surprisin l

materials. As can
t ese materials appear to be

FIG. 13. A plot of the i
fo od11. The parameters used to e d e

= 8, T = 4'.
s use to generate th fi d ee e d are

1.0 I I I
i

I I

0.8

0.6

0.4

0.2
m!'

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 12. As in Fis in Fig. 9 except oq ——1ET' = 1 and cJg = 0.

FIG. 14.. 14. A plot of the i v()=
p ameters d

= 87r.
use to generate th 6e eld are
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very different when viewed at the same scale. However,
the major qualitative differences are related to the ef-
fective decay length, and when the materials are viewed
at a scale proportional to this length they appear to be
remarkably similar as shown in Figs. 2(e)—2(h). Equiva-
lently if the length parameters are retained in Eqs. (4.1)—
(4.6) they can be tuned to achieve the latter group of
figures at the same scale (without effecting a, ). The re-
maining smaller qualitative differences account for the
variation in o observed.

VIII. CONCLUSION

We have investigated the effective conductivity of a
two phase random composite material using bound. ing
techniques and direct simulation. Our calculations of (i
increase the classes of composites to which the bounds
can be applied, while the simulation data can be used
to assess predictive theories [56] and be compared with
higher order bounds. The results also pertain to a variety
of other effective properties of amorphous composites as
discussed in Sec. II.

The bounds encompass all of the simulational data and
the upper bound yields a reasonable estimate of 0, for
p ) 0.7 (cri ) o'2). Reasonably large differences in cr,
and (i are observed between the amorphous GRI mod-
els and the IOS model. This highlights the importance
of incorporating microstructure effects in the calculation
of the effective properties of composite materials. Con-
versely there is relatively little variation in 0 among the
GRI models as the major qualitative microstructural dif-
ferences between the models are related to an effective
decay length upon which o is necessarily independent.
We expect that other properties of such composites where
no intrinsic field length scale is present (e.g. , the elastic
bulk and shear moduli) will show similar behavior.

It is clear that the Gaussian random interface model
discussed here can serve as a useful "model" amorphous
medium in the study of the effective properties of ran-
dom composites. Furthermore the bounds and simula-
tions can be related to physical composites by experi-
mentally relating such systems to one of the theoreti-
cally known models. This could be done by comparing
the spectra obtained from small angle scattering studies
with that obtained &om the 2-point correlation functions
of each model. Or, more simply, by comparing images of
the models with electron micrographs. Although such
schemes are only approximate, our results indicate that
the one microstructural details are relatively unimpor-
tant in both the calculation of (i and the simulation of
Oe.

We note that the GRI model can be extended to the
case of membranes and foams [35,56] and that higher
order correlation functions can be calculated for use in
more precise bounds. Random walker algorithms can be
utilized to investigate the often studied scaling properties
of 0 near the percolation threshold.

D. Singleton, and X. Zhang for helpful discussions. The
simulations reported here were carried out on the Think-
ing Machines CM-5 at the Australian National Univer-
sity Supercomputer Facility. A.R. is supported by an
Australian postgraduate research award.

APPENDIX A: ASYMPTOTIC FORMS OF Pg

The two point function [Eq. (3.5)] can be expanded in
powers of o; to yield,

1 . e 2 (—1)n2 a„
p2(g) = —arcsing + ) + p (Al)

27r 2m - 2 n!n=1

with

2 (1 —gl"
2n —1 (1+gj

—an —1. (A2)

and ao ——0. This expansion converges rapidly for small

For the case n )) 0 we have (using successive integra-
tion by parts),

(A3)

1 (
»(g) = —

I

27(

( n' l dt

-i) E 1+t) V'1 —t'

(A4)

In the second of these integrals we make the substitution
v = 1/(1 + t) —1 to give

—cx2 OOe
3

227r

2
e—Ck V

O'U

(v+ 1)(v + 2) ~
(A5)

which can be expanded using Watson's Lemma,

e 1 2 7 (1)———+ —+OI —
I271 0! 0! o.s

(A6)

Special care must be taken to determine a practical ex-
pansion for p2. A simple application of Watson's Lemma
[57] yields a solution which does not possess the correct
limiting behavior as g + 0 and gives two different expan-
sions for the cases g = 1 and g ( 1. The erst problem
is dealt with by appropriately partitioning the integral,
while the second necessitates a further transformation of
variable, followed by an expansion in scaled parabolic
cylinder functions (see for example Ref. [58]). Thus we
write

ACKNOWLEDGMENTS

The authors thank Stjepan Marcelja for suggesting the
problem and M. Knackstedt, K. McGrath, P. Pieruschka,

This is just the expansion of p which can be canceled
from Eq. (A4). The remaining integral is put in a stan-
dard form by the substitution v = 1/(1 + t) —1/(1 + g),
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~2
1+g

2~sr s (v+

2—CL V

, dv. (A7)
)(v+ gi+ )

Note that the nature of the singularity of the integrand
changes order as g -+ 1 (this makes it impossible to gen-
erate an expansion for the full range of g using Watson's
Lemma). To develop a uniform expansion for large n
valid near g = 1 we make the further substitution,

(i ——9 dr
T T+8
ds p~(t)h(r, s, t)dt,

7' —8

faking p = i in Eq. (3.11) we have f = pz (t)/2—
2p+z(r)p+z(s). Note that the integral of the second term
vanishes since it does not depend on u and f Pq(u) du =
0. Therefore after making the substitution t = p + 82—
2sru Eq. (Bl) becomes

to give

1 —g
1+g

—n (i2u +b~u)

27t o
2 g 1+g

(As)

(A9)

where h(r, s, t) = t(sr) 4[4(t —sz —rz)~ —r~t~]. Inter-
changing the order of integration results in

(. =9~ j +j'~.*. ~)f ~ f'
OC) t/2 t—8

—9 p~ (t) ds hdr,
26 6 8

In the usual way the nonexponential component of the
integrand can be expanded in powers of u and integrated
term by term to give,

p~(y) =

/2t' t'
P. (t)

&3,, —
2,, + 24,, l

«. (B4)

Now by taking e -+ 0 and using the fact that p+~(0) = i

gives (i

and carrying out the straightforward integrations over r
and 8 leads to

where

(1 —2y)(1+y)'~
~+ Ts 6sn (A10)

APPENDIX C: RELATIONSHIP BETWEEN crE, ,
(i, AND SHAPE AT LDW' P

e " "s" 'ds = I'(n)e4' U(n —z, z).

(A11)

U(o, , z) is a parabolic cylinder function [59]. Two simple
checks can be made on this expansion. For g = 1 we have
T (0) = 2 ~ I'(~) which, when substituted in (A10),
gives the expansion of p. For g ( 1 we again employ
Watson's Lemma to determine the asymptotic expansion,

(—1)'I'(n+ 2j)
g2'z +~

j=0
(A12)

APPENDIX B: PKDDF DF g = —FDK P =—

In Brown's formulation the parameter (r arises as the
limit as e ~ 0 of the integral

9 dr d8
duPz (u) f (r, s, t)2pq, r, 8

(Bl)

where f is the term in brackets of Eq. (2.7). Now by

Now taking g = 0 in (A10) and using this exparision gives
the asymptotic form of p as it should. The expansions
for the case n (( 0 (p = 1) are simply, p = 1 —AEi
and pq(g) = 2p —1+ AEq, where AEi and AEz are the
asymptotic expansions given by (A3) and (A10), respec-
tively, with n replaced by lnl. Note that Berk [35,37] has
derived. a formal series representation of p2 valid for all
o., however the convergence of the series is slow for g —1
and not guaranteed at g = 1.

Consider the small concentration approximation [60]
to o for the case of randomly distributed and oriented
spheroids with axial ratios A, A, 1 —2A,

o, = o~+ —p(oi —og)z(or, o~, A) + O(p ),
1 2

3

where

(C2)
o-g + A(oi —og) o-g + (1 —2A)(o, —o.g)

With A 6 [0, 1/2] it can be easily shown that z has a
unique minimum at A = 1/3 (spherical inclusions) and is
monotonically increasing as lA —1/3l increases. Therefore
with o.

q ) o2, cr will be higher the lower the sphericity
of the inclusions (and conversely for oq ) or). The same
argument should qualitatively hold for arbitrary shapes.
To see how this relates to gr we match the terms of the
expansions of Eq. (Cl) and Eq. (2.6) to order p and (cri-
oz) which gives [13,17] (i ——(1 —3A) + O(p). Thus (r
will be higher for less spherically shaped inclusions.

APPENDIX D: IMPLEMENTATION OF THE
FINITE DIFFERENCE SCHEME

The finite difference scheme (see, for example, Ref.
[50]) for the equations and boundary conditions discussed
in Sec. II leads to a system of simultaneous equations for
the value of the potential at each of the interior nodes
(including those on lateral faces if we define P to be pe-
riodic in the x and y directions). For each such node u
we have



51 TRANSPORT PROPERTIES OF HETEROGENEOUS MATERIALS. . . 4153

) rr„„(P„—P„)= 0,
vgnn

(D1) TABLE IX. The microstructure parameter gq which arises
in bounds on the elastic bulk and shear moduli (see Appendix
E) for selected Gaussian media. Data for the IOS model [1,62]
are included for purposes of comparison.

where nn is the set of nearest neigbors of node u and
o

„

is the conductivity of the bond lying between nodes
u and v. Conventionally these equations are cast as a
matrix equation with P and the boundary conditions as
one dimensional matrices (vectors) [50]. On a parallel
computer it saves coding and implementation time to
retain the potential P; s A,, as a 3D matrix. Define A as the
operator which performs the operations de6ned on the
left hand side of (Dl) for interior nodes and AP—:P on
the nodes where Dirichlet conditions are to be applied.
Also define b as a 3D matrix containing the boundary
conditions on the field (b, s i ——Pi, b; s M = Po for all
i, J' and b = 0 elsewhere). Then solving the system of
equations for P is equivalent to minimizing

~] AP —b ][2,
which can be done using a conjugate gradient method
which handles vectors of general dimension.

p
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

IOS

0.075
0.149
0.224
0.295
0.367
0.439
0.512
0.583
0.658

I v=O
K=oo
0.276
0.333
0.388
0.444
0.500
0.556
0.612
0.667
0.724

I v=O
K=8
0.213
0.291
0.362
0.432
0.500
0.568
0.637
0.709
0.787

5 150 dr ds
rh — (1 +

21 7pq p + p

~)„(„,,)
P ( )» ( )~[

III p = 1.5

0.106
0.197
0.294
0.396
0.500
0.604
0.706
0.803
0.894

duP4 (u)

APPENDIX E: CALCULATION OF THE
MICROSTRUCTURE PARAMETER g

Three point bounds have also been derived for the elas-
tic bulk and shear moduli [5—7,61] which can be expressed
[7] in terms of (i and an additional parameter,

We have calculated gq for several diferent GRI models
and tabulated (see Table IX) it along with data for the
IOS model. Qualitatively the results are similar to those
for (r and we expect the differences in the efFective shear
and bulk moduli among the GRI models to be similar to
those observed for the conductivity case.
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