45,609 research outputs found

    A generalization of Bohr's Equivalence Theorem

    Get PDF
    Based on a generalization of Bohr's equivalence relation for general Dirichlet series, in this paper we study the sets of values taken by certain classes of equivalent almost periodic functions in their strips of almost periodicity. In fact, the main result of this paper consists of a result like Bohr's equivalence theorem extended to the case of these functions.Comment: Because of a mistake detected in one of the references, the previous version of this paper has been modified by the authors to restrict the scope of its application to the case of existence of an integral basi

    Variational Monte Carlo with the Multi-Scale Entanglement Renormalization Ansatz

    Get PDF
    Monte Carlo sampling techniques have been proposed as a strategy to reduce the computational cost of contractions in tensor network approaches to solving many-body systems. Here we put forward a variational Monte Carlo approach for the multi-scale entanglement renormalization ansatz (MERA), which is a unitary tensor network. Two major adjustments are required compared to previous proposals with non-unitary tensor networks. First, instead of sampling over configurations of the original lattice, made of L sites, we sample over configurations of an effective lattice, which is made of just log(L) sites. Second, the optimization of unitary tensors must account for their unitary character while being robust to statistical noise, which we accomplish with a modified steepest descent method within the set of unitary tensors. We demonstrate the performance of the variational Monte Carlo MERA approach in the relatively simple context of a finite quantum spin chain at criticality, and discuss future, more challenging applications, including two dimensional systems.Comment: 11 pages, 12 figures, a variety of minor clarifications and correction

    Comment on ''Field-Enhanced Diamagnetism in the Pseudogap State of the Cuprate Bi2Sr2CaCu2O8+\delta Superconductor in an Intense Magnetic Field''

    Full text link
    In the above mentioned letter by Wang et al. [Phys. Rev. Lett, 95, 247002 (2005)], magnetization measurements on two Bi_2Sr_2caCu_2O_8+delta samples are reported. They claim that these experimental results support the vortex scenario for the loss of phase coherence at Tc. On the contrary, we show in this comment that they can be explained by means of the Ginzburg Landau theory (under a total-enery cutoff) for the superconducting fluctuations above Tc.Comment: Final versio

    Optical absorption and energy-loss spectra of aligned carbon nanotubes

    Get PDF
    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.Comment: 7 pages, 12 figures, to appear in Eur. Phys. J.

    Entanglement dynamics in the Lipkin-Meshkov-Glick model

    Full text link
    The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relevant and show that their entanglement dynamics are very different. A semiclassical analysis is used to compute the one-tangle which measures the entanglement of one spin with all the others, whereas the frozen-spin approximation allows us to compute the concurrence using its mapping onto the spin squeezing parameter.Comment: 11 pages, 11 EPS figures, published versio

    Entanglement in a second order quantum phase transition

    Full text link
    We consider a system of mutually interacting spin 1/2 embedded in a transverse magnetic field which undergo a second order quantum phase transition. We analyze the entanglement properties and the spin squeezing of the ground state and show that, contrarily to the one-dimensional case, a cusp-like singularity appears at the critical point λc\lambda_c, in the thermodynamic limit. We also show that there exists a value λ0λc\lambda_0 \geq \lambda_c above which the ground state is not spin squeezed despite a nonvanishing concurrence.Comment: 4 pages, 4 EPS figures, minor corrections added and title change

    Quantum phase transitions in fully connected spin models: an entanglement perspective

    Full text link
    We consider a set of fully connected spins models that display first- or second-order transitions and for which we compute the ground-state entanglement in the thermodynamical limit. We analyze several entanglement measures (concurrence, R\'enyi entropy, and negativity), and show that, in general, discontinuous transitions lead to a jump of these quantities at the transition point. Interestingly, we also find examples where this is not the case.Comment: 9 pages, 7 figures, published versio

    Extraordinary exciton conductance induced by strong coupling

    Full text link
    We demonstrate that exciton conductance in organic materials can be enhanced by several orders of magnitude when the molecules are strongly coupled to an electromagnetic mode. Using a 1D model system, we show how the formation of a collective polaritonic mode allows excitons to bypass the disordered array of molecules and jump directly from one end of the structure to the other. This finding could have important implications in the fields of exciton transistors, heat transport, photosynthesis, and biological systems in which exciton transport plays a key role.Comment: Main text: 5 pages, 4 figures; Supplemental: 2 pages, 1 figure. Version 2: Updated reference to related work arXiv:1409.2550. Version 3: Updated to version accepted for publication in Physical Review Letter
    corecore