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Monte Carlo sampling techniques have been proposed as a strategy to reduce the computational cost of
contractions in tensor network approaches to solving many-body systems. Here, we put forward a variational
Monte Carlo approach for the multiscale entanglement renormalization ansatz (MERA), which is a unitary
tensor network. Two major adjustments are required compared to previous proposals with nonunitary tensor
networks. First, instead of sampling over configurations of the original lattice, made of L sites, we sample over
configurations of an effective lattice, which is made of just ln(L) sites. Second, the optimization of unitary
tensors must account for their unitary character while being robust to statistical noise, which we accomplish
with a modified steepest descent method within the set of unitary tensors. We demonstrate the performance of
the variational Monte Carlo MERA approach in the relatively simple context of a finite quantum spin chain at
criticality, and discuss future, more challenging applications, including two-dimensional systems.
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I. INTRODUCTION

Understanding the collective behavior of quantum many-
body systems remains a central topic in modern physics, as
well as one of the greatest computational challenges in science.
Quantum Monte Carlo sampling techniques are capable of ad-
dressing a large class of (unfrustrated) bosonic and spin lattice
models, but fail when applied to other models such as frustrated
antiferromagnets and interacting fermions due to the so-called
sign problem. Variational approaches, on the other hand, are
sign-problem free but are typically strongly biased toward
specific many-body wave functions. An important exception is
given by the density matrix renormalization group (DMRG),1

a variational approach based on the matrix product state
(MPS),2 which is capable of providing an extremely accurate
approximation to the ground state of most one-dimensional
lattice models. The success of DMRG is based on the fact that
an MPS can reproduce the structure of entanglement common
to most ground states of one-dimensional lattice models.

In order to extend the success of DMRG to other
contexts, new tensor networks generalizing the MPS have
been proposed. For instance, the multiscale entanglement
renormalization ansatz (MERA),3 with a network of tensors
that extends in an additional direction corresponding to length
scales, is particularly suited to address quantum critical
systems. Most significant has also been the proposal of
tensor networks for systems in two and higher dimensions,
where the MPS becomes inefficient. Scalable tensor networks
include the projected entangled-pair states4 (PEPS) (a direct
generalization of the MPS to larger dimensions) and higher-
dimensional versions of the MERA.5,6 They can be used to
address frustrated antiferromagnets and interacting fermions
since they are free of the sign problem experienced by quantum
Monte Carlo approaches.

In a tensor network state, the size of the tensors is measured
by the bond dimension χ . This bond dimension χ indicates
how many variational coefficients are used. Crucially, it also
regulates both the cost of the simulation, which scales as
O(χp) for some large power p, and how much ground-state

entanglement the many-body ansatz can reproduce. In the
large-χ regime, PEPS and MERA are essentially unbiased
methods, but with a huge computational cost that is often
unaffordable. More affordable simulations are obtained in the
small-χ regime, but there these methods are biased in favor
of weakly entangled phases (e.g., symmetry-breaking phases)
and against strongly entangled phases (e.g., spin liquids and
systems with a Fermi surface). Identifying more efficient
strategies for tensor network contraction, so that larger values
of the bond dimension χ can be used and the bias toward
weakly entangled states is suppressed, is therefore a priority
in this research area.

References 7 and 8 proposed the use of Monte Carlo
sampling as a means to decrease computational costs in tensor
network algorithms. (We note that there are other variational
ansätze, such as so-called correlated product states, entangled
plaquette states, and string-bond states, the contractibility of
which relies on sampling; see the introduction of Ref. 9
for a review). In a tensor network approach such as MPS,
MERA, or PEPS, sampling over specific configurations of
the lattice allows us to reduce the cost of contractions (for
single samples) from O(χp) to O(χq), where q is significantly
smaller than p, typically of the order of p/2. Needless to
say, sampling introduces statistical errors. However, if less
than O(χq−p) samples are required in order to achieved some
pre-established accuracy, then overall sampling results in a
reduction of computational costs.

The proposal of Refs. 7 and 8 is based on computing
the overlap of the tensor network state with a product state
(representing the sampled configuration). As such, it can not
be directly applied to the MERA because the overlap of a
MERA with a product state can not be computed efficiently.
Luckily, as discussed in Ref. 10, a sampling strategy specific to
unitary tensor networks (such as MERA and unitary versions
of MPS and tree tensor networks) is not only possible, but it
actually has several advantages. Most notably, sampling takes
place over configurations of a reduced, effective lattice; and
it is possible to perform perfect sampling by means of which
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uncorrelated configurations are drawn directly according to
the correct probability.

The main goals of this paper are to propose a variational
Monte Carlo scheme for the MERA and to demonstrate its
feasibility. We also discuss possible future applications. Let
us briefly list some of the highlights of the approach. (i) In
a lattice of size L, the sampled configurations correspond to
an effective lattice of size O[ln(L)]; in this way, the cost of
evaluating the expectation value of a local observable scales
just as O[ln(L)] and not as O(L) as in Refs. 7 and 8. (ii) We
employ the perfect sampling strategy of Ref. 10, thus avoiding
the losses of efficiency in the Markov chain Monte Carlo of
Refs. 7 and 8 due to equilibration and autocorrelation times.
(iii) Variational parameters are optimized while explicitly
preserving the unitary constraints that the tensors in the MERA
are subjected to. This is accomplished by a steepest descent
method within the set of unitary tensors, which is much more
robust to statistical noise than the singular value decomposition
methods employed in MERA algorithms without sampling.11

We demonstrate the performance of our approach by
computing an approximation to the ground state of a finite Ising
chain with transverse magnetic field. For the binary MERA
under consideration, sampling lowers the costs of elementary
contractions from O(χ9) to O(χ5). We find that the resulting
(approximate) ground-state energy decreases as the number
of samples is increased, thus obtaining a demonstration of
principle of the approach. We also notice that the number of
samples required to achieve a given accuracy increases as the
transverse magnetic field approaches its critical value.

In this work, we perform sampling-based optimization of a
relatively complicated tensor network. Previous similar opti-
mizations included that of an MPS,8 which is a considerably
simpler tensor network (with only three-legged tensors), and
of tensor networks that under sampling break into smaller,
simpler tensor networks (e.g., into MPS, single plaquette
states, etc.).7,9,12,13 In more complex tensor networks, such
as MERA and PEPS, the optimization becomes much harder
due to high sensitivity to statistical noise. Thus, for instance,
Ref. 14 spells out a full variational Monte Carlo approach for
PEPS but uses an alternative method, not based on sampling,
in order to optimize the tensors. Indeed, in Ref. 14, sampling
is only used to aid in the computation of expectation values.
Here, instead, we use sampling both to optimize the MERA
and to compute expectation values.

We emphasize, however, that our results only demonstrate
a gain over optimization schemes based on exact contractions
(i.e., without sampling) in the low accuracy regime, where
only a relatively small number of samples are required. The
specific MERA [namely, binary MERA for a one-dimensional
(1D) lattice] and low value of χ (χ = 4) considered here
for illustrative purposes implies that the cost per sample is
χ9/χ5 = χ4 = 256 times smaller than an exact contraction.
Recall that the statistical error decreases only as

√
N with the

number N of samples. If more than 256 samples are required
in order to obtain a sufficiently accurate approximation of the
exact contraction, then the sampling scheme may be overall
less efficient than the exact contraction scheme.

The advantage of sampling over exact contraction schemes
is expected to be more evident in MERA settings where
the cost O(χp) scales with a larger exponent p, and for

larger values of χ . In particular, we envisage that the method
described in this paper, possibly with further improvements,
will improve the range of applicability of MERA in two and
higher dimensions.

The content of this paper is distributed in five more sections.
In Sec. II, we discuss methods for sampling with the MERA.
In Sec. III, we propose an optimization scheme using sampling
techniques. In Sec. IV, we benchmark the approach with the
quantum Ising model. In Sec. V, we discuss future applications
including extensions to higher dimensions and extracting long-
range correlations, before concluding in Sec. VI.

II. LOCAL EXPECTATION VALUES WITH SAMPLING

In this section, we explain how to use sampling in order
to speed up the computation of expectation values with the
MERA. We present both complete and incomplete perfect
sampling strategies, building on the proposals of Ref. 10
for generic unitary tensor networks. We also discuss the
importance of the choice of local basis in sampling. We start by
reviewing some necessary background material on the MERA.

A. MERA, expectation values and causal cones

The MERA (Ref. 3) is a variational wave function for
ground states of quantum many-body systems on a lattice.
The state |�〉 of a lattice L made of L sites is represented
by means of a tensor network made of two types of tensors,
called disentanglers and isometries. The tensor network is
based on a real-space renormalization group transformation,
known as entanglement renormalization: disentanglers are
used to remove short-range entanglement from the system,
whereas isometries are used to coarse-grain blocks of site
into single, effective sites. An example of a MERA on a
periodic 1D lattice with L = 12 sites is depicted in Fig. 1.
This structure is called “binary” MERA because of the
2-to-1 course-graining transformation in each repeating layer.
Ascending upward in the figure, the disentanglers U (n) remove
short-range entanglement in-between each course-graining
transformation, implemented by isometries W (n) until the
remaining Hilbert space is small enough to deal directly with
some wave function ϕ.

The MERA can also be viewed in the reverse: starting
from the top of Fig. 1, we descend downward in a unitary

FIG. 1. (Color online) Tensor network diagram for a binary
MERA presenting the state |�〉 of a translation-invariant lattice L
made of L = 12 sites and with periodic boundary conditions. The
tensors on each layer are identical and their labels are displayed
to the left. The U (n) tensors (green rectangles) are unitary operators
(acting top-to-bottom), W (n) (cyan triangles) are isometric, and ϕ (red
circle) is a normalized “wave function.”
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FIG. 2. (Color online) Expectation value 〈�|Â|�〉 = 〈�C |Â|�C〉
of the local operator Â (yellow rectangle), which acts on (at most)
three neighboring sites. The flipped tensors, on the bottom half of
the diagram, are the Hermitian conjugates of the respective tensors
above. The “causal cone” is delimited by the dotted line in the
left diagram, corresponding to 〈�|Â|�〉. The tensors outside the
causal cone cancel, significantly simplifying the diagram on the right,
corresponding to 〈�C |Â|�C〉.

quantum circuit, adding (initially unentangled) sites in each
layer. For instance, let us flow downward in Fig. 1. To a
three-site system in state ϕ, we first add three additional
unentangled sites, turning it into a 6-site system; and later
we add another 6 unentangled sites, producing the final
12-site system. This unitary structure can be exploited when
calculating the expectation value 〈Â〉 ≡ 〈�|Â|�〉 of a local
operator Â acting on a few neighboring sites. Specifically, all
tensors not “causally” connected to the few sites supporting
Â cancel, as depicted in Fig. 2. The resulting diagram is
significantly simpler and can be interpreted as the expectation
value 〈�C |Â|�C〉 of Â for a state |�C〉 of an effective lattice
LC made of O[ln(L)] sites (see Fig. 3). We emphasize that, by
construction,

〈�|Â|�〉 = 〈�C |Â|�C〉. (1)

Therefore, we can evaluate the expectation value 〈�|Â|�〉 by
contracting the tensor network corresponding to 〈�C |Â|�C〉.
The numerical cost of performing this contraction grows
linearly with the number of sites in LC , and thus only
logarithmically with the number of sites L in the original
lattice L.

The dimension of the Hilbert space after each course-
graining transformation is an adjustable parameter, the bond
dimension χ , which plays a central role in the present dis-
cussion. Increasing the bond dimension χ implies including a
larger fraction of the original Hilbert space and leads to greater

FIG. 3. (Color online) States |�〉 and |�C〉 represented by the
MERA. (a) Tensor network for the state |�〉 of the original lattice
L. The causal cone is delimited by a discontinuous line. (b) Tensor
network for the state |�C〉 of the effective lattice LC . Sites further
from the center effectively represent increasingly large length scales
in the original lattice.

accuracy, but also requires greater computational resources.
Optimization algorithms to approximate ground states, and to
evaluate local expectation values and correlators, are present in
the literature.11,15 The numerical cost of finding an expectation
value or performing a single optimization iteration using the
binary MERA scales as O(χ9 ln L) for a translation-invariant
system. For more complex MERA structures, such as those
representing two-dimensional (2D) lattices, the power of χ for
the cost increases dramatically. For instance, the 2D MERA
presented in Ref. 5 has a numerical cost of O(χ16 ln L), which
on current computers restricts χ < 8. For many systems, this
does not allow for enough entanglement to accurately describe
the ground state, limiting the accuracy of the approach.

Here, we hope to alleviate this problem by reducing
the numerical cost as a function of χ using Monte Carlo
techniques. We will find that the cost of a single sample scales
as O(χ5) for binary 1D MERA, compared to the O(χ9) cost
of the “exact” contraction.

B. Monte Carlo sampling with the MERA

Our goal is to compute the expectation value 〈Â〉 ≡
〈�|Â|�〉 by contracting the tensor network corresponding
to 〈�C |Â|�C〉 (see Fig. 2). The first step is to reexpress
the tensor network contraction as a summation over indices
corresponding to the sites of the effective lattice, as shown in
Fig. 4. We then get

〈Â〉 =
∑
r∈R

〈�C |r〉〈r|Â|�C〉, (2)

where R is an orthonormal basis of product states |r〉 = |r1〉 ⊗
|r2〉 ⊗ . . . on the effective lattice LC .

We will approximately evaluate the sum in Eq. (2) by using
Monte Carlo sampling over the states |r〉 ∈ R. Notice that
in the effective lattice, the sites away from the support of
Â have undergone one or more course-graining transforma-
tions. In other words, sites further from the center represent
increasingly larger length scales. Thus, sampling over sites
of the effective lattice corresponds to sampling the system at
different length scales. This property is reminiscent of global

FIG. 4. (Color online) Tensor network for 〈�C |Â|�C〉. The
dashed lines indicate the indices that will be sampled. On the
right-hand side, we explicitly write the tensor contractions outside
the causal cone as a sum over a complete, orthonormal set of
wave functions |r〉 = |r1〉 ⊗ |r2〉 ⊗ . . . (pink circles). Monte Carlo
sampling will be performed over this set. Each term of the sum can
be expressed as the product 〈�C |r〉〈r|Â|�C〉.
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FIG. 5. (Color online) Diagrams required to create a sample, sequentially sampling indices from the top to the bottom of the MERA. First,
the reduced density matrix ρi (blue circles) of an index is computed. We then randomly generate a state |ri〉 according to the diagonal basis
of ρi , and proceed to calculate ρi+1. In each “layer” of the MERA, we sample the outermost indices in (a), (b) and one of the inner indices in
(c), (d), depending on the physical location we are sampling. A projected, three-site wave function for the following layer is calculated in the
appropriate diagram (e) or (f), from which the algorithm begins again with (a), until we have sampled all the indices indicated in Figs. 4 or 6.

or cluster updates used in existing Monte Carlo methods to
solve critical systems.

A naive scheme for approximating the sum in Eq. (2)
would be to choose |r〉 at random from R, and evaluate
〈�C |r〉〈r|Â|�C〉 according to the tensor networks in Fig. 4.
The cost of obtaining a single sample scales as O(χ5 ln L).
However, the statistical variance of a sampling scheme
can be substantially reduced by implementing importance
sampling, in this case choosing configurations |r〉 that are more
likely. More precisely, sampling is implemented according
to the wave-function weight P (r) ≡ |〈�C |r〉|2, which can be
calculated efficiently as indicated in Fig. 5. We can express
Eq. (2) in a form more convenient for importance sampling,

〈Â〉 =
∑
r∈R

P (r)AC(r), (3)

where

AC(r) ≡ 〈�C |r〉〈r|Â|�C〉
〈�C |r〉〈r|�C〉 = 〈r|Â|�C〉

〈r|�C〉 . (4)

Note that because the MERA is normalized by construc-
tion, and therefore the weights sum to one,

∑
r∈R P (r) =

1. However, during sampling only some subset R̃ of the
configurations are considered. One needs to renormalize the
weights accordingly, so that the expectation value 〈Â〉 is
approximated as

〈Â〉 ≈
∑
r∈R̃

P (r)AC(r)

/ ∑
r∈R̃

P (r). (5)

1. Complete perfect sampling

In the case of MERA, and indeed any state that can
be written as a unitary quantum circuit, a “perfect” sample
can be generated according to the probability distribution
P (r) in a single sweep.10 This makes Markov chain Monte
Carlo unnecessary, simplifying the algorithm and eliminating

a source of statistical error (i.e., autocorrelation effects). This
is one advantage of this technique over other tensor network
sampling methods in the literature.7–9,12–14

The sample can be constructed by sampling just one index
at a time. Beginning at the top layer of the MERA, and aiming
to sample just the first index [leftmost in Fig. 4(b)], we can
construct the one-site reduced density matrix ρ1 by the tensor
contraction in Fig. 5(b). The probability P (r1) = 〈r1|ρ1|r1〉
can then be found for all possible |r1〉. A value of |r1〉 is
then randomly selected according to any complete basis of our
choosing.

After this selection is made, we can then sample the next
(topmost) index, according to the conditional weights P (r2 | r1)
as calculated by the diagram in Fig. 5(b) (we refer to Ref. 10
for further details). We continue to sample the state of each
site until we have sampled every site.

Each of the diagrams in Fig. 5 can be calculated with
cost O(χ5), while there are O(ln L) layers to the MERA. A
single sample can therefore be generated with cost O(χ5 ln L),
compared to O(χ9 ln L) for the exact contraction. So long as
the number of samples N is significantly less than χ4, Monte
Carlo sampling will be faster than exact contraction.

In practice, we will perform N 	 1 samples in order to
get a good estimate of 〈Â〉. As the samples are completely
uncorrelated, the variance of AC(r)

Var[AC] ≡
∑

r

P (r)(AC(r) − ĀC)2 (6)

can be used to estimate statistical error �A,

�A ≡
√

Var[AC]/N, (7)

while Var[AC] is itself upper bounded by the variance of the
operator to be measured,

Var[AC] � 〈Â2〉 − 〈Â〉2. (8)

It is easy to show that the upper bound is saturated when
sampling in the diagonal basis of Â. However, the actual value
of this variance is dependent on the choice of basis {|r〉}, as
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FIG. 6. (Color online) Tensor network diagrams for the quantities
(a) 〈�C |r
〉〈r
|�C〉 = P (r) and (b) 〈�C |r
〉Â〈r
|�C〉 with incom-
plete sampling.

well as the state being sampled. Therefore, it is worth spending
some effort in order to minimize this quantity.

2. Incomplete perfect sampling

The statistical noise is caused by Monte Carlo sampling of
the tensor contraction, and it stands to reason that sampling
less indices in the tensor network diagram (see Fig. 4) would
reduce the statistical error. Indeed, it is possible to exactly
contract the three physical indices at the lowest level (those
connected to operator Â) while keeping the computational cost
at O(χ5 ln L), as depicted in Fig. 6. That is, we sample over
configurations r
 ∈ R
 of the effective lattice LC minus the
three central sites on which Â is supported.

This method effectively generates (unnormalized) three-
site wave functions |ϕ0(r
)〉 ≡ 〈r
|�C〉 from the reduced
density operator [as seen in Figs. 5(e) and 5(f)]. Conversely,
the reduced density matrix for the three central sites is∑

r
 |ϕ0(r
)〉〈ϕ0(r
)|. Importance sampling is now achieved
by selecting r
 according to the weight

P (r
) ≡ 〈�C |r
〉〈r
|�C〉 = 〈ϕ0(r
)|ϕ0(r
)〉. (9)

In turn, perfect sampling of the sites proceeds exactly as before,
but it stops before the three central sites, which are not sampled.
We define the estimator

A
(r
) ≡ 〈�C |r
〉Â〈r
|�C〉
〈�C |r
〉〈r
|�C〉 = 〈ϕ0(r
)|Â|ϕ0(r
)〉

〈ϕ0(r
)|ϕ0(r
)〉 , (10)

the expectation value of which obeys

〈Â〉 =
∑

r
∈R

P (r
)A
(r
), (11)

in analogy with Eq. (3). Notice that, by construction, the
statistical variance Var[A
] is smaller or equal than Var[AC]
in Eq. (8), and therefore the numerical accuracy is increased
without affecting the computational cost.

3. Diagonal basis selection

In general, we are free to choose any complete basis R (or
R
) from which to draw individual samples. A good choice is
one that produces a small statistical error [Eqs. (7) and (8)].
Intuitively, the goal of importance sampling is to decrease the

statistical variance by choosing configurations r (or r
) with a
large overlap with the state |�C〉. With this in mind, one could
aim to maximize the “average” weight

P ≡
∑

r

P (r)2

/ ∑
r

P (r). (12)

It is easy to show that for a given quantum probability
distribution, specified by a density matrix, the above quantity is
maximized in the diagonal basis of the density matrix. Inspired
by this fact, here we choose to sample site i in the basis in which
the reduced density matrix ρi is diagonal. The χ × χ density
matrices ρi , calculated in Fig. 5, can be diagonalized with cost
O(χ3). Note that the chosen basis will depend on previously
sampled sites, and that the resulting sampling basis is still a
complete, orthonormal basis of product states.

We have found that this approach can radically increase the
average value of the weight [Eq. (12)] with the effect becoming
stronger for larger systems and values of χ . More importantly,
we find that the statistical variance in the observables is
decreased (see Sec. IV A and Fig. 8). This technique to select
the sampling basis is not specific to unitary tensor networks
nor perfect sampling methods, and could thus be of benefit to
other variational quantum Monte Carlo algorithms.

4. Operators that decompose as sum of local terms

Finally, we may wish to compute the expectation value of an
operator that is the sum of local terms, such as a Hamiltonian
made of nearest-neighbor interactions:

Ĥ =
∑

i

Ĥi . (13)

In this case, we sample each local term Ĥi as indicated
previously, noticing that the causal cone of each Ĥi depends
on the location of the sites of lattice L where the local operator
is supported. One can either choose to (uniformly) sample the
position i in the lattice, or systematically sweep through all
the positions i. A complete sweep, where each site i is visited
once, costs O(χ5L ln L).

III. ENERGY MINIMIZATION WITH SAMPLING

In order to find an approximation to the ground state, we
need to minimize the energy of the MERA. The direction of
steepest ascent is given by the complex derivative with respect
to the conjugate16 of each element of each tensor. Inserting
Eq. (4) [or Eq. (10)] into Eq. (5) and differentiating gives

∂〈Ĥ 〉
∂U (n)∗ =

∑
i

∂〈Ĥi〉
∂U (n)∗ , (14)

∂〈Ĥi〉
∂U (n)∗ =

∑
r

P (r)

[
1

P (r)

∂〈�C |r〉〈r|Ĥi |�C〉
∂U (n)∗

− 〈Ĥi〉
P (r)

∂〈�C |r〉〈r|�C〉
∂U (n)∗

]
, (15)

where the derivative with respect to a tensor is element-wise,
and similar expressions hold for W (n) and ϕ. The derivatives
on the right-hand side of Eq. (15) can be found by using the
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FIG. 7. (Color online) Examples of tensor network diagrams to find the derivatives of 〈�C |r
〉Â〈r
|�C〉 and 〈�C |r
〉〈r
|�C〉 with respect
to the tensor U (2)† [i.e., the transpose of those in Eq. (15)]. The derivative with respect to a particular tensor is given by its environment, or the
contraction of all the other tensors in the diagram. The chain rule produces multiple terms where a tensor appears more than once.

usual rules for calculating derivatives in the diagrams (see
Figs. 6 and 7). [Notice that the second term in the brackets
of Eq. (15) arises from the change in the normalization of the
wave function. Although we are dealing with unitary/isometric
tensors which ensure 〈�C |�C〉 = 1, small changes in arbitrary
directions may break the unitarity and modify the norm.
Interestingly, even when projecting into the unitary tangent
space (see below) where this term averages to zero, its
inclusion is important to reduce the sampling error, sometimes

by several orders of magnitude.] In practice, 〈Ĥi〉 and ∂〈Ĥi 〉
∂U (n)∗

will be estimated simultaneously by sampling.
Multiple approaches are possible for updating the MERA

to minimize the energy and find a good approximation
to the ground state. One approach often used iteratively
optimizes each tensor in the MERA according to the following
algorithm11:

usv = − ∂〈Ĥ 〉
∂U (n)∗ ,

(16)
U (n) → uv.

In the above, u and v are unitary, while s is diagonal and
positive, thus representing the singular value decomposition
(SVD) of the derivative. This algorithm finds the unitary
tensor U (n) that minimizes the trace value of its product
with the above, called environment (with the requirement
that Ĥ is negative semidefinite). Similar steps apply to W (n)

and ϕ, where the SVD ensures that they remain isometric or
normalized, respectively.

Unfortunately, the above scheme is extremely sensitive to
the statistical noise inherent to Monte Carlo sampling, and
results in very poor optimization. Ideally, we would prefer a
method in which the statistical noise is able to average out over
many iterations.

The most obvious scheme satisfying this requirement is
straightforward steepest descent. Again, one must ensure that
the tensors obey the unitary/isometric constraints character-
istic of the MERA, so one can utilize the SVD to find the
unitary tensor closest (with respect to the L2 norm) to the
usual downhill update. With this method, the ith step is

given by

usv = U (n) − μt

∂〈Ĥ 〉
∂U (n)∗ ,

(17)
U (n) → uv,

where μt is a number modulating the size of change at the
step t .

In this paper, we avoid using the SVD entirely by explicitly
remaining in the unitary subspace, along the lines of Ref. 17.
We define the tangent vector G

(n)
U as the derivative projected

onto the tangent space of all unitaries located about U (n),

G
(n)
U = ∂〈Ĥ 〉

∂U (n)∗ − U (n) ∂〈Ĥ 〉
∂U (n)∗

†

U (n). (18)

The matrix U (n) − μtG
(n)
U is within O(μ2

t ) of a unitary matrix.
Noting that U (n)†G(n)

U is anti-Hermitian, then the update

U (n) → U (n) exp

[
−μt

(
U (n)† ∂〈Ĥ 〉

∂U (n)∗ − ∂〈Ĥ 〉
∂U (n)∗

†

U (n)

)]

(19)

both travels in the direction of the tangent vector while U (n)

remains precisely unitary. The same approach works for n × m

isometric matrices, taking care that n � m, with computational
cost scaling similarly to the SVD approach as O(n2m) (see
Appendix).

The performance of the algorithm is highly dependent on
the behavior of μt , as well as the number of Monte Carlo
samples Nt taken in each step. Simple schemes will keep
μt and Nt constant, which is the approach we take here.
On the other hand, one may choose to increase Nt with t so
that harmful noise is reduced when approaching the optimal
solution, or to decrease μt with t for much the same reason,
or a combination of both.
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IV. BENCHMARK: CRITICAL QUANTUM ISING CHAIN

In this section, we demonstrate the above techniques with
the well-known transverse-field quantum Ising model

Ĥ = −
∑

i

σ̂ z
i σ̂ z

i+1 + hσ̂ x
i . (20)

Such a Hamiltonian can be expressed as a sum of nearest-
neighbor terms Ĥi , such that

Ĥi = −σ̂ z
i σ̂ z

i+1 − h/2
(
σ̂ x

i + σ̂ x
i+1

)
. (21)

We will pay particular attention to the region around the critical
point at h = 1, which is the most demanding computationally.
For concreteness, we use a three-layer binary MERA with
periodic boundary conditions, resulting in a lattice of 24 sites in
the bottom of the MERA structure. However, each of these sites
corresponds to a block of 3 physical spins, making a total of
72 spins. We choose this blocking so that for χ � 23 = 8, the
bond dimension only ever decreases when ascending through
the MERA. In what follows, we employ incomplete perfect
sampling where three sites at the bottom of the MERA are
contracted exactly.

A. Expectation values

We now analyze the effectiveness of extracting expectation
values from the MERA using Monte Carlo sampling. For
perfect sampling techniques, the accuracy can be easily
extracted from the variance using Eq. (7). The scaling of the
error in the energy �E ∝ N−1/2 is shown explicitly for the
critical (h = 1) system in Fig. 8(a). The variance of the energy
estimator E as a function of h is shown in Fig. 8(b). Here, we
have used MERA wave functions previously optimized using
standard techniques11 without Monte Carlo sampling, that is,
sampling is only employed to extract the expectation values.

Notice that the variance is maximal near the critical point
at h = 1. As the Monte Carlo code effectively samples wave
functions from the reduced three-site (i.e., nine-spin) density
operator, one would expect the energy variance to increase
with the amount of entanglement in the system. For reference,
we have included the entropy of the three-site density matrix
ρ(3) in Fig. 8(c). This entropy mostly (there may be very small
contributions to the entropy resulting from the anisotropy of
the MERA; also note that Ĥ and ρ(3) share a Z2 symmetry
which is broken by the MERA wave function for h < 1,
and the exact ground state should have S = ln 2 entanglement
entropy as h → 0) corresponds to the entanglement entropy of
three sites with the remainder of the system. We see a strong
correlation between the amount of entanglement and the size
of the variance of the energy estimator E.

Let us emphasize that Fig. 8(b) shows that our scheme
performs significantly better than directly sampling ρ(3) in
either the x or z spin basis. The measured variances are very
similar to a diagonal sampling of ρ(3) (i.e., in its diagonal
basis). This indicates that the sampling scheme is performing
as intended in Sec. II B3.

In general, an accurate representation of wave functions
with greater amounts of entanglement will require greater
bond dimension χ . These results suggest that the statistical
variance generated by this scheme will also increase with the
entanglement. To achieve a certain precision in the expectation
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FIG. 8. (Color online) (a) The statistical error of the energy per
site at h = 1 as a function of the number of samples N follows
the classic N−1/2 scaling. (b) Variance of the energy estimator
(normalized to the expectation value 〈Ĥ 〉) for optimized MERAs
with bond dimension χ = 8 for various values of h (red crosses).
Estimates of the statistical uncertainty are smaller than the symbols.
The gray area is eliminated by inequality Eq. (8), bounded by the
variance of Ĥ . For comparison, we include the variances expected
from several hypothetical samplings of ρ(3). Variances from sampling
the spins in the z (or x) basis is indicated by a blue, dashed-dotted
(or green, dashed) line. Our numerical results (red crosses) show
remarkable similarity with sampling in the diagonal basis of ρ(3)

(black, solid line). (c) The entanglement entropy of ρ(3). In (b) and
(c), the critical point at h = 1 is indicated with a red dotted vertical
line.

value of local observables, the number of required samples
grows with this variance, and thus with the amount of
entanglement and with the minimum suitable value of χ .
Therefore, although a single sample has cost O(χ5), the total
cost to obtain a certain precision may have some additional
dependence on χ . Nevertheless, no additional dependence was
clearly manifest in our simulations at fixed h.
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B. Optimization

Finally, we combine Monte Carlo sampling with our
unitary-subspace steepest descent algorithm to obtain opti-
mized wave functions. In Fig. 9, we plot the energy of the
MERA during the optimization process at h = 1 and χ = 4,
where the simulation progresses through a range of different
number of sweeps N per optimization step. In all cases, the
step size is fixed at μt = 0.1. We observe that increasing N

improves the quality of the optimized wave function, and for
large values of N the simulation tends to converge toward the
same energy obtained with exact contractions, as expected.

Like all tensor network optimizations, care must be taken
to ensure the wave function has fully converged to the lowest
energy state. For instance, in Fig. 9(a), we see a plateau
in energy before around the 4000th iteration that could be
mistaken for convergence (whereas the simulation is actually
navigating a stiff region, i.e., a long narrow valley in the
energy landscape). Nondeterministic features due to statistical
fluctuations can also be seen, such as the sudden increase
of energy of the N = 4 simulation around the 13 000th
iteration.

Beyond this, accuracy could be improved by increasing χ .
It should be noted that we have observed that the steepest
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FIG. 9. (Color online) (a) Energy of a wave function with χ = 4
during optimization. Each iteration is updated using N sweeps, where
N is 1,2,4,8 in the black crosses, red pluses, green diamonds, and
blue points, respectively. Every 100 iterations, we calculate the exact
energy corresponding to the current wave function, which is plotted
here. The solid horizontal line indicates the energy of an optimized
χ = 4 MERA using exact contractions and steepest descent (which
remains ≈7 × 10−4 above the the true ground-state energy, indicated
by the dashed line). The simulation converges for large N , but χ

may need to increase for greater accuracy. (b) Difference to the above
solid line plotted on a logarithmic scale. The difference reduces with
increasing N , and although statistical fluctuations are decreasing,
they remain evident on the logarithmic scale.
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FIG. 10. (Color online) The difference between the final opti-
mized energy and the true ground state for a variety of field strengths
h. The markers indicate the number of Monte Carlo sweeps taken
between updates N = 1,4,16,64 for the black cross, red diamond,
green circle, and blue square, respectively. There is a clear trend for
improved ground-state energy as N increases, and away from the
critical point at h = 1 (vertical red dotted line).

descent method (with either exact contractions or sampling)
will not always produce wave functions of the same quality
as the SVD method as it may be more susceptible to local
minima or extreme stiffness. However, accuracy can still be
systematically improved by increasing χ .

In the previous section, we noted that the statistical
uncertainty peaked around the critical point at h = 1, where
the entanglement is maximal, and one might expect the
optimizations to be most difficult around this point. Plotted in
Fig. 10 is the difference in energy between our wave functions
and the exact, analytic solution for a range of h. We observe
that the error decreases away from the critical point, and that
there is a clear relationship between the quality of the wave
function and the number of samples per step N .

There are several possible limiting factors in variational
Monte Carlo optimizations of MERA wave functions. One
must balance the cost of increasing N , χ , and the total number
of iterations to produce results of the desired accuracy. On
top of this, the ansatz presents a complicated optimization
landscape, and one must be careful not to be stuck in local
minima.

There is much scope to improve on the above opti-
mization scheme by using more sophisticated approaches.
Most obviously, the step size μt and number of samples Nt

performed in each iteration could be adjusted as the simulation
progresses. For example, by choosing the step size to decrease
as μt ∝ 1/tα , with N fixed and 0 < α � 1, we are guaranteed
convergence to some local minimum.18 Equivalently, the noise
could be reduced at each step by increasing N ∝ tβ , or some
combination of both.

In Ref. 8, it was found that using just the sign of the
derivative, as well as properties resulting from translational
invariance, was sufficient for optimizing a periodic MPS
with Monte Carlo sampling. Other approaches existing in the
literature may result in significant gains, although it should
be noted that approaches requiring the second derivative or
Hessian matrix would increase the order of the numerical cost
as a function of χ , and would have to be made robust to
statistical noise.
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FIG. 11. (Color online) (a) The ternary MERA structure has
isometries transforming 3 sites into 1. (b) This two-layer binary
MERA structure has added disentanglers which may help represent
long-range entanglement. (c) Sampling scheme for the lowest layer
of the 3×3-to-1 MERA described in Ref. 5.

V. FUTURE APPLICATIONS

There are several situations where it is most natural to use
Monte Carlo sampling to speed up MERA algorithms. Let us
briefly review them.

A. Different MERA structures

In this work, we have considered in detail the binary MERA
for a 1D lattice with translation invariance. However, even
in a translationally invariant 1D lattice, one has freedom to
choose between a large variety of entanglement renormal-
ization schemes, leading to MERA structures with different
configurations of isometries and disentanglers.

The ternary MERA, shown in Fig. 11(a), has a narrower
causal cone, with a width of just two sites, and the traditional
algorithms for optimizing it have a cost that scales as O(χ8).
As a result, the ternary MERA is sometimes favored over the
binary MERA. Note that this does not necessarily translate
into an improved accuracy in expectation values: the ternary
MERA is in general less accurate than binary MERA for the
same value of χ .

It is interesting to note that, in the ternary MERA, the perfect
sampling algorithm presented here again has costO(χ5), while
Markov chain Monte Carlo, as well as expectation value
and environment estimation, is possible with cost O(χ4). It
is unclear whether after including autocorrelation effects the
Markov chain method performs better, similar, or worse overall
compared to the perfect sampling algorithm.

Another possible 1D MERA includes two layers of disen-
tanglers to account for entanglement over larger distances,
as depicted in Fig. 11(b). This MERA has a causal cone
that is five sites wide, and traditional algorithms would have
numerical costO(χ12) and require memoryO(χ10), limiting χ

to rather small values. However, a sampling technique will only
require O(χ7) time per sample and O(χ5) memory overall, a
huge saving. Note that the power roughly halves when we
change from an exact contraction, which effectively rescales
density matrices from higher layers to lower, to a Monte Carlo
scheme which samples wave functions from this distribution.

FIG. 12. (Color online) Causal cone of two operators separated
by 17 sites in a 4-layer binary MERA. Monte Carlo sampling can be
performed on the red points, with a cost O(χ 8). An exact contraction
of the expectation value costs O(χ 12).

The scaling of computational cost in χ in 2D lattices is even
more challenging, mostly because the width of the causal cone
(or number of indices included in a horizontal section of the
causal cone) is much larger. Once again, sampling wave func-
tions will require roughly square-root the number of operations
(and memory) needed to calculate the exact reduced-density
matrix. For instance, in the 3×3-to-1 MERA presented in
Ref. 5, the cost of an exact contraction scales as O(χ16 ln L),
while with Monte Carlo sampling it is possible with just
O(χ8 ln L) operations per sample [depicted in Fig. 11(c)].
Memory might be a limiting factor in 2D MERA algorithms,
while the temporary memory required for this algorithm is less
than that to store the disentanglers and isometries.

B. Long-range correlations

Another challenge with MERA calculations is the numer-
ical cost of long-range correlations. Take for instance the
two-site operator 〈ÂiB̂j 〉 for arbitrary sites i and j . The cost
required to contract the corresponding tensor network within
the binary MERA scheme can scale as much as O(χ12),
significantly more than the O(χ9) cost for neighbor and
next-nearest-neighbor correlations.

However, an estimate of the correlator can be obtained
using Monte Carlo sampling at a reduced cost (per sample). In
Fig. 12, we depict the causal cone structure of two single-site
operators separated by i − j = 17 sites in a binary MERA.
The cost of Monte Carlo sampling for 〈ÂiB̂j 〉 is just O(χ8).

This technique can be extended to 2D lattice systems, where
calculating long-range correlations exactly quickly becomes
infeasible, even for modest values of χ . Note again that mem-
ory constraints are particularly challenging for 2D MERA cal-
culations, and Monte Carlo sampling can alleviate this burden.

VI. CONCLUSION AND OUTLOOK

We have outlined and tested a scheme for Monte Carlo
sampling with the MERA. Uncorrelated samples can be
efficiently generated directly from the wave-function overlap
probability distribution, without needing to resort to Markov
chain Monte Carlo methods. From this, expectation values can
be extracted and we have demonstrated techniques to reduce
the statistical error. We have also presented and demonstrated
an algorithm to optimize MERA wave functions using sampled
energy derivatives.
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The numerical results presented here were not intended to
be state-of-the-art solutions of the 1D quantum Ising model,
but rather to demonstrate feasibility and motivate subsequent
applications to 2D systems. In general, Monte Carlo sampling
becomes more advantageous for systems with large numbers
of degrees of freedom, and we expect 2D MERA to be no
exception. Because the reduction in cost in two (and higher)
dimensions is so significant, Monte Carlo techniques are a very
attractive way to achieve reasonable values of χ with current
computers.

Obvious improvements to the code include utilizing
symmetries and parallelization to supercomputers, which is
straightfoward with our perfect sampling algorithm. Further
research into optimization strategies may lead to other im-
provements (e.g., by reducing the number of iterations or the
tendency to find local minima). Reweighting techniques7 may
make the optimization more efficient when approaching the
ground state.
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APPENDIX

In this appendix, we explain how to compute, with cost
O(n2m), the n × m isometric matrix

F = A exp(A†B − B†A), (A1)

where A is an n × m isometric matrix, B is a general m × n

matrix, and n � m. The naive approach would be to evaluate

the m × m matrix A†B − B†A and compute its exponential,
with cost O(m3), before multiplying by A. However, noting
that the exponent does not have full rank (the rank is at most
2n), we can hope to find a faster method.

Taking the Taylor expansion

F = A + B − AB†A + 1

2!
(BA†B − BB†A

− AB†B + AB†AB†A) + . . . , (A2)

we observe that the result can be achieved with a series of
multiplications between n × n matrices C = AB†, C† and
D = BB†, post-multiplied by either A or B, requiring total
cost O(n2m).

The following algorithm calculates the Taylor expansion to
order p:

C ← AB†; D ← BB†,
W ← I ; X ← 0; Y ← I ; Z ← 0
for i = 1 → p do

T ← −(WC† + XD)/i,
X ← (W + XC)/i,
W ← T ,
Y ← Y + W ,
Z ← Z + X

end for
F ← YA + ZB.

In the binary MERA, where isometries are χ × χ2 matrices
(i.e., n = χ , m = χ2), the cost of this algorithm scales as
O(χ4), compared with the cost O(χ6) of the naı̈ve approach.
This algorithm becomes particularly important for a tree tensor
network and for the MERA in two dimensions, where the naive
approach becomes more expensive, in powers of χ , than a
sampling (thus becoming the bottle neck of an optimization
based on sampling), whereas the above algorithm remains
competitive.
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