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Abstract. Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes
are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor
is assigned to every point of the tubules, and the effective transverse dielectric function of the composite
is computed by solving Maxwell’s equations in media with tensor-like dielectric functions. A Maxwell-
Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed.
Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon
nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the
electric-field pattern associated with this coupling is presented, showing that in the close-packed regime
the incident radiation excites a very localized tangential surface plasmon.

PACS. 78.66.Sq Composite materials – 41.20.Jb Electromagnetic wave propagation; radiowave
propagation – 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

1 Introduction

The description of the electronic response of carbon nan-
otubes [1,2] has been a challenge for theoretical and ex-
perimental investigations. Various theoretical studies of
plasmon excitations in single-shell carbon nanotubes were
reported [3–5], electron-energy-loss spectra from individ-
ual multishell nanotubes were investigated [6–9] by chang-
ing the number of shells, and curvature was found to in-
duce little effect on the covalent bonding of multishell
nanotubes [10]. With the availability of aligned carbon
nanotube films [11,12], optical measurements were car-
ried out with polarized light [12,13], thereby evaluating
the frequency-dependent effective dielectric function of the
composite and showing that carbon nanotubes have an in-
trinsic and anisotropic metallic behaviour. Accurate calcu-
lations of the effective dielectric function of densely packed
carbon nanotubes, as obtained by solving Maxwell’s equa-
tions with the use of tensor-like dielectric functions, have
been carried out only very recently [14,15].

In this paper we report extensive calculations of the
frequency-dependent effective dielectric function of a com-
posite made up of aligned carbon nanotubes embedded in
an otherwise homogeneous medium. In Section 2 our effec-
tive medium theory is described. We take an electromag-
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netic wave normally incident on the structure, and focus
on the case of electromagnetic waves polarized normal to
the cylinders (p polarization). For this polarization we also
introduce a generalized Maxwell-Garnett (MG) [16] effec-
tive dielectric function appropriate for anisotropic tubules.
Absorption of p polarized light is found to be sensitive to
both the inner cavity of hollow tubules and the anisotropy,
which we first investigate in Section 3.1 within the MG
approach. In Section 3.2 we focus on the close-packed
regime, showing that the experimentally measured macro-
scopic dielectric function of aligned carbon nanotubes is
the result of a strong electromagnetic coupling between
the tubes. Calculations of the electric field, the induced
charge, and the so-called energy-loss function, i.e., the
imaginary part of the effective inverse dielectric function,
are also presented, for various values of the filling frac-
tion and the ratio of the internal and external radii of the
cylinders. The main conclusions of our work are addressed
in Section 4.

2 Theory

Take a periodic array of infinitely long multishell nan-
otubes of inner and outer radii r and R, respectively, ar-
ranged in a square array with lattice constant a = 2 xR,
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Fig. 1. Multishell nanotubes of inner and outer radii r and R,
respectively, arranged in a square array with lattice constant a.
The cylinders are infinitely long in the y-direction. The electro-
magnetic interaction of this structure with a normally incident
plane wave of momentum k [ky = kz = 0] and energy ω is
investigated.

as shown in Figure 1. These tubules are assumed to be
embedded in an insulating medium, with a real and pos-
itive dielectric constant ε0. In the energy range of inter-
est in the interpretation of absorption cross sections and
energy-loss spectra the diameter of typical multishell car-
bon nanotubes (2R ∼ 10 nm) is small in comparison to
the wavelength of light, and we also assume that this diam-
eter is large enough that a macroscopic dielectric function
is ascribable to the tubules. For simplicity, the magnetic
permeabilities will be assumed to be equal to unity in all
media.

Planar graphite is a highly anisotropic material, and
the dielectric function is a tensor. This tensor may be di-
agonalized, by choosing Cartesian coordinates with two
of the axes lying in the basal plane and the third axis be-
ing the so-called c-axis. One defines the dielectric function
ε⊥(ω) perpendicular to the c-axis and the dielectric func-
tion ε‖(ω) for the electric field parallel to the c-axis. For
carbon nanotubes, we assume full transferability of the di-
electric tensor of planar graphite to the curved geometry
of carbon tubules, as suggested by Lucas et al. [17] for
the case of multishell fullerenes. Hence, we simply assign
a local graphite-like dielectric tensor to every point inside
the nanotube and outside the inner core, and write

ε̂(ω) = ε⊥(ω)(θθ + zz) + ε‖(ω)rr, (1)

where θθ, zz, and rr are the unitary basis vectors of cylin-
drical coordinates.

In the long-wavelength limit, a composite material may
be treated as if it were homogeneous, with the use of an
effective dielectric function εeff . The optical absorption
cross section of the composite is then directly given by
Im εeff(ω). Also, for small values of the dimensionless pa-
rameter qR (qR < 1), q being the momentum transfer,
the energy-loss spectra of a broad beam of swift electrons

penetrating the composite is found [18,19] to be well de-
scribed by the q → 0 limit of the imaginary part of the
effective dielectric function, i.e., the so-called energy-loss
function, Im[−ε−1

eff (ω)].
We consider an electromagnetic wave normally inci-

dent on the structure, so that ky = kz = 0. For this prop-
agation direction there are two different values of εeff(ω)
corresponding to s and p polarizations. In the case of s
polarization the electric field is parallel to the cylinders
at every point, and is not modified by the presence of the
interfaces. Hence, the s effective dielectric function of the
composite is simply the weighted average of the dielectric
functions of the constituents [20].

For electromagnetic waves polarized normal to the
cylinders (p polarization), the electric field may be
strongly modified by the presence of the interfaces. An
elementary analysis shows that

(εeff − ε0)E = f(ε̂− ε̂0)Ein, (2)

where E is the average electric field over the composite,

E = fEin + (1− f)Eout, (3)

Ein and Eout representing the average electric field inside
and outside the tubules, respectively, both lying in the
plane of periodicity.

In the case of a single two-dimensional circular inclu-
sion (plain or hollow cylinder) embedded in an otherwise
homogeneous medium (f → 0), one easily finds

(ε̂− ε̂0)Ein = ε0αE, (4)

and equation (2) then yields

εeff = ε0 (1 + f α) , (5)

where α represents the in-plane dipole polarizability per
unit volume.

As long as the composite is made of a sparse (f � 1)
distribution of cylinders the presence of multipolar modes
can be neglected [21], and the interaction between the
cylinders can be introduced by simply replacing the av-
erage electric field E in equation (4) by Eout. Then, with
the aid of equations (2) and (3), one finds

εeff = ε0

(
1 + f

α

1− f Lα

)
(6)

and

ε−1
eff = ε−1

0

(
1− f α

1 + f Lα

)
, (7)

with the geometrical factor L = 1/2. For cylindrical ge-
ometry [22],

α =
2

(1− ρ2)

×
(ε‖∆− ε0)(ε‖∆+ ε0)− (ε‖∆− ε0)(ε‖∆+ ε0)ρ2∆

(ε‖∆+ ε0)(ε‖∆+ ε0)− (ε‖∆− ε0)(ε‖∆− ε0)ρ2∆
,

(8)
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where

∆ =
√
ε⊥/ε‖. (9)

Equation (8) with ρ = 0 and ε‖(ω) = ε⊥(ω) reduces to
the well-known polarizability per unit volume of a plain
isotropic cylinder.

Equation (6) is a generalization, appropriate for
anisotropic tubules, of the well-known MG effective di-
electric function derived by Maxwell-Garnett for a system
of spherical particles [16].

In the non-sparse or packed regime, where the presence
of multipolar modes cannot be neglected, the inclusion of
the full electromagnetic interaction between the tubules
is unavoidable. In order to compute, with full inclusion
of this interaction, the effective dielectric function of our
periodic system, we have followed the method developed
in references [23] and [24] for the calculation of dispersion
relationships k(ω) of Bloch waves in structured materials
with tensor-like dielectric functions.

In the long-wavelength limit the composite material
supports, for each polarization, only two degenerate elec-
tromagnetic Bloch waves with vectors k and −k for which
k(ω) roughly follows the dispersion relation of free light.
Hence, in this limit the composite may be treated as if it
were homogeneous, with an effective transverse dielectric
function

εeff(ω) =
k2(ω)c2

ω2
, (10)

where c represents the speed of light.

3 Results and discussion

We consider a periodic array of hollow multishell carbon
nanotubes (see Fig. 1) with ε0 = 1, and take the princi-
pal dielectric functions ε⊥(ω) and ε‖(ω) of graphite from
reference [25]. The real and imaginary parts of these com-
ponents, as well as their corresponding energy-loss func-
tions, are represented in Figure 2 for energies up to 8 eV.
In this energy range, optical transitions mainly involve the
π bands arising from the atomic 2pz orbitals. The peak in
Im ε⊥(ω) at ∼ 4.6 eV is associated with the maximum in
the joint density of states of the π valence and conduc-
tion bands. The so-called π plasmon at ∼ 7 eV, where
Re ε⊥(ω) and Im ε⊥(ω) are small, is due to a π−π∗ inter-
band transition [26].

For energies over ∼ 5 eV, the principal dielectric func-
tion ε⊥(ω) is close to that of a free-electron gas. Thus,
for these energies π electrons within each shell act as if
they were free. However, for free-electron-like materials
Re ε⊥(ω) approaches large negative values with decreas-
ing energy, whereas for graphite the plasmon region with
Re ε⊥(ω) negative is bounded from below and from above
at about 5 and 7 eV.

Calculations of the s component of the effective di-
electric function of an array of coaxial nanotubes were
reported in reference [15] for various values of the filling
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Fig. 2. Energy dependence of the real and imaginary parts
of the principal dielectric functions, Re ε(ω) and Im ε(ω), and
the energy-loss function, Im[−ε−1(ω)], for graphite, taken from
reference [25]. Solid and dashed lines represent components
perpendicular and parallel to the c-axis, respectively.

fraction f of the tubes, showing that they roughly repro-
duce the experimentally determined Imεeff(ω) for f ∼ 0.5.

Here we focus on the case of electromagnetic waves
polarized normal to the cylinders (p polarization), which
we first investigate within the MG approach.

3.1 Maxwell-Garnett approach

First of all, we ignore the anisotropy and simply assume
that ε(ω) = ε‖(ω) = ε⊥(ω). In this case, the in-plane
dipole polarizability of equation (8) can be expressed in
the form of a spectral representation:

α = −
(

B+

u−m−
+

B−
u−m+

)
, (11)

where u is the spectral variable
u = (1− ε/ε0)−1

, (12)

m± are depolarization factors,

m± =
1
2

(1± ρ) , (13)

and B± are the strengths of the corresponding normal
modes,

B± =
1
2
· (14)

The depolarization factors of equation (13) lie on the
segment [0,1] for all values of ρ. Hence, normal modes
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Fig. 3. Imaginary part of the in-plane dipole polarizability
per unit volume of isotropic plain (ρ = 0) and hollow (ρ 6= 0)
cylinders, as obtained either from equation (8) with ε‖(ω) =
ε⊥(ω) or from equation (11), as a function of frequency ω and
for various values of the ratio between the inner and outer radii
of the cylinders: ρ = 0, 0.2, 0.4, 0.6, and 0.8.

only occur in the so-called plasmon region where the
dielectric function ε(ω) is negative or equal to zero. For
graphite, this plasmon region is bounded from below
and from above at about 5 and 7 eV where the spectral
variable u is never smaller than u ∼ 0.2. As the ratio
between the inner and outer radii of the tubes goes to
unity (ρ→ 1), one easily finds

α =
1
2
(
ε− ε−1

)
. (15)

In the case of an isolated plain (ρ = 0) or hollow
(ρ 6= 0) cylinder, both Im εeff(ω) and Im[−ε−1

eff (ω)] are
proportional to the imaginary part of the in-plane dipole
polarizability α, and satisfy the relation

Im
[
−ε−1

eff

]
= ε−2

0 Im εeff . (16)

Hence, the absorption and energy-loss spectra of isolated
plain (ρ = 0) cylinders in vacuum (ε0 = 1) exhibit a strong
maximum at ∼ 6.5 eV where u = 1/2 and ε(ω) = −1, as
shown in Figure 3. For hollow tubes (ρ 6= 0), there are
two distinct dipolar modes with either tangential or ra-
dial symmetry, at u = m− < 1/2 and u = m+ > 1/2,
respectively, similar to those present in the case of a thin
planar film [27] and a spherical shell [28]. The corre-
sponding peak heights in Imα(ω) are easily found to be
H B±/

√
m±, H representing the peak height in the bulk

energy-loss function, Im[−ε−1(ω)]. Thus, the tangential
mode at u = (1−ρ)/2 appears to be more pronounced than
the radial mode at u = (1 + ρ)/2 (see Fig. 3). For ρ = 0.2

these modes are not resolved, due to the smoothing effect
of the large damping associated with non-negligible val-
ues of Im ε⊥(ω), and the effect of the empty core is sim-
ply to redshift and soften this combined plasmon mode.
For values of ρ in the range 0.2 < ρ < 0.8 the tangen-
tial and radial plasmons are clearly identified. However,
for larger values of ρ the tangential resonance condition
(u → 0) is never satisfied. Furthermore, in the limit as
ρ → 1 the effective dielectric function is given by equa-
tion (15), thus showing the radial plasmon resonance at
∼ 7 eV, where u = 1 and ε(ω) = 0, and the character-
istic peak at ∼ 4.6 eV associated with the maximum in
Im ε(ω).

Still ignoring the anisotropy, the MG effective di-
electric function and inverse dielectric function of equa-
tions (6) and (7) can also be expressed in the form of a
spectral representation:

εeff = ε0

[
1− f

(
B+

u−m−
+

B−
u−m+

)]
(17)

and

ε−1
eff = ε0

[
1 + f

(
B−

u− n−
+

B+

u− n+

)]
, (18)

where

m± =
1
2

(
1− 1

2
f ± 1

2

√
f2 + 4ρ2

)
, (19)

n± =
1
2

(
1 +

1
2
f ± 1

2

√
f2 + 4ρ2

)
, (20)

and

B± =
1
2

√
f2 + 4ρ2 ± f√
f2 + 4ρ2

, (21)

the mode strengths (B− ≤ 1/2 and B+ ≥ 1/2) adding
up to unity, i.e., B+ + B− = 1. Also, m−, n− ≤ 1/2 and
m+, n+ ≥ 1/2.

In Figure 4, we show the surface-mode positions m±
and n± of equations (19) and (20), as a function of ρ,
for various values of the ratio x between the lattice con-
stant and the outer diameter of the cylinders. In the dilute
limit (x→∞), both m± and n± coincide with the depo-
larization factors of equation (13) entering the spectral
representation of the polarizability. As x decreases, for
each value of ρ these surface modes split into four distinct
modes, m± and n±, which satisfy the simple relation:

n± = 1−m∓. (22)

The strengths B±, as obtained from equation (21), are
plotted in Figure 5, as a function of ρ, also for various
values of the ratio x between the lattice constant and
the outer diameter of the cylinders. As in the case of
the depolarization factors, in the dilute limit (x → ∞)
the strengths B± coincide with the strengths B± = 1/2
entering the spectral representation of the polarizability.
As x decreases, these strengths are different, especially
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Fig. 4. Surface-mode positions: (a) m−, n+ and (b) m+, n−,
as obtained from equations (19) and (20) versus ρ, for various
values of the ratio between the lattice constant and the outer
diameter of the cylinders: x = 3 (solid lines), x = 1.5 (dotted
lines), and x = 1 (dashed lines).

for small values of ρ, showing that the strongest modes
occur at u = m− and u = n+ with the depolarization
factors m− and n+ lying on the segments [0, (1 − f)/2]
(low-energy resonance) and [(1+f)/2, 1] (high-energy res-
onance), respectively (see Fig. 4). The modes at u = m−
and u = n+, which have no strength for ρ = 0, lie on
the segments [1/2,1] and [0,1/2], respectively. For x→ 1,
one easily finds B+ = 1/(1 + ρ2) and B− = ρ2/(1 + ρ2),
thereby showing that modes occurring at u = m− and
u = n+ dominate. Hence, when cylinders are touching
and for most values of ρ there is a single dominating res-
onance condition at u→ 0 (low energy) and u→ 1 (high
energy) in Im εeff(ω) and Im[−ε−1

eff (ω)], respectively, the
strength of the remaining resonance being negligible.

From equations (17) and (18), we have calculated
Im εeff(ω)/f and Im[−ε−1

eff (ω)]/f for various values of x
and the ratio ρ between the inner and outer radii of
the cylinders. While for x = 3 both Im εeff(ω)/f and
Im[−ε−1

eff (ω)]/f are found to nearly coincide with the
imaginary part of the polarizability of equation (11) (see
Fig. 3), we have found that the trend with decreasing the
distance between the cylinders is for the low-energy and
high-energy resonances to slightly move from the single-
cylinder dipole resonances at u = (1 ± ρ)/2 to lower and
higher energies, respectively; this is obvious in Figure 6,
where Im εeff(ω)/f and Im[−ε−1

eff (ω)]/f , as obtained from
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Fig. 5. Strengths B±, as obtained from equation (21) versus
ρ, for various values of the ratio between the lattice constant
and the outer diameter of the cylinders: x = 3 (solid lines),
x = 1.5 (dotted lines), and x = 1 (dashed lines).
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Fig. 6. Imaginary part of the MG effective dielectric function
and MG effective energy-loss function of the periodic system
described in Figure 1, as obtained from either equations (6)
and (7) with ε‖(ω) = ε⊥(ω) or from equations (17) and (18),
and for various values of the ratio between the inner and outer
radii of the cylinders: ρ = 0 (solid line), ρ = 0.2 (dotted line),
ρ = 0.4 (short-dashed line), ρ = 0.6 (long-dashed line), and
ρ = 0.8 (solid line). The ratio between the lattice constant and
the outer diameter of the cylinders is taken to be x = 1.5.
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Fig. 7. Same as Figure 3, as obtained from equation (8) with
use of the actual principal dielectric functions ε⊥(ω) and ε‖(ω)
of graphite.

equations (17) and (18), have been represented for x = 1.5
and various values of ρ. We also note that as x decreases
the low-energy (u = m−) and high-energy (u = n+)
modes, whose energy position depends only weakly on ρ,
dominate the optical absorption and energy-loss, respec-
tively.

The role of anisotropy is displayed in Figures 7 and 8.
In these figures, we have plotted Imα(ω) (Fig. 7),

Im εeff(ω)/f (Fig. 8), and Im[−ε−1
eff (ω)]/f (Fig. 8), as ob-

tained from equations (8), (6) and (7) with full inclusion of
the anisotropic dielectric function of graphite and for var-
ious values of ρ, as in Figures 3 and 6. With the presence
of anisotropy, the two-mode structure exhibited by equa-
tions (11) , (17) and (18) is replaced by a more compli-
cated spectral representation. One sees from Figure 7 that
the tangential plasmon peak-position of isolated cylinders
remains fairly insensitive to the anisotropy of carbon nan-
otubes. However, its shape drastically changes, as a con-
sequence of the presence of a nearly constant and positive
dielectric function ε‖, and the radial resonance condition is
not visible. For x = 3 the MG dielectric function is found
to nearly coincide with the isolated-cylinder result, as in
the isotropic case. As the distance between the cylinders
decreases, the impact of the anisotropy is still to soften
the resonances. Furthermore, one sees from Figure 8 that
now at small values of ρ the low-energy resonance is only
visible in the optical absorption, while the energy loss only
exhibits the high-energy peak.

3.1.1 Packed regime

In this section we present results of our calculation of the
effective dielectric function of a periodic array of carbon
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Fig. 8. Same as Figure 6, as obtained from equations (6)
and (7) with use of the actual principal dielectric functions
ε⊥(ω) and ε‖(ω) of graphite.

nanotubes, as obtained from equation (10) with full inclu-
sion of both the anisotropy and the electromagnetic in-
teraction between the tubules. All calculations presented
here have been found to be insensitive to the precise value
of the number of mesh points in the unit cell. For metallic
structures, sampling meshes as large as 180 × 180 have
been found to be required to provide well-converged re-
sults [19]; however, for carbon nanotubes sampling meshes
of 60× 60 have been found to provide well-converged re-
sults, which is due to the smoothing effect of the large
damping originated with the presence of interband tran-
sitions in graphite.

In Figures 9 and 10 we show our full calculations of
the p component of the effective dielectric function of an
array of plain (ρ = 0) carbon nanotubes, as obtained for
various values of the ratio x between the lattice constant
and the outer diameter of the cylinders: x = 2.0, x = 1.5
and x = 1.3 in Figure 9, and x = 1.1 and x = 1.03 in
Figure 10. Also plotted in these figures by dotted lines
are calculations of the MG dielectric function of equa-
tions (6) and (7). These calculations show that the actual
effective dielectric function is well described by the MG
approximation in the low-filling-ratio regime, our full cal-
culations beginning to deviate from those obtained within
the MG approximation at x ∼ 1.3. For smaller concentra-
tions of graphite, multipolar modes cannot be neglected
and the dipole-resonance positions necessarily deviate, as
discussed in reference [19].
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Fig. 9. The real and imaginary parts of the long-wavelength
effective dielectric function, Re εeff(ω) and Im εeff(ω), and the
energy-loss function, Im[−ε−1

eff (ω)], of a periodic array of plain
(ρ = 0) carbon nanotubes, for p polarized electromagnetic ex-
citations. Solid, long-dashed, and short-dashed lines represent
our full calculated results, as obtained from equation (10) for
ratios between the lattice constant and the outer diameter of
the cylinders x = 2, x = 1.5, and x = 1.3, respectively. The dot-
ted lines represent MG results, as obtained from equations (6)
and (7).

One sees from Figures 9 and 10 that, as within the
MG approach, the trend with increasing the concentra-
tion of tubules is for the actual dipolar peak in Im εeff(ω)
and Im[−ε−1

eff (ω)] to be shifted from the isolated-cylinder
dipole mode at ∼ 6.5 eV to lower and higher energies, re-
spectively. When the nanoparticles are brought into close
contact, electromagnetic coupling between them converts
the dipolar surface mode into a very localized one, trapped
in the region between the nanostructures, and the MG
approximation fails to describe the details of the effective
dielectric function. We note that multipolar resonances,
which are present in the close-contact regime, are not vis-
ible in the spectra due to the smoothing effect of the large
damping characteristic of graphite. At higher concentra-
tions of tubules, when graphite forms a connected medium
(x ≤ 1), dipolar modes cannot be excited. Hence, optical
absorption exhibits a single peak originated in the max-
imum of Im ε(ω) at ∼ 4.6 eV, and the energy-loss func-
tion shows a single peak at the bulk plasmon resonance
at ∼ 7 eV. Besides these peaks, there is a background
of unresolved multipole contributions to Im εeff(ω) and
Im[−ε−1

eff (ω)] in the plasmon region with energies between
∼ 5 and ∼ 7 eV.

Fig. 10. Same as Figure 9, for ratios between the lattice con-
stant and the outer diameter of the cylinders x = 1.1 (solid
line) and x = 1.03 (dashed line).

Calculations of the p component (p polarization) of the
effective dielectric function of a periodic array of hollow
(ρ 6= 0) carbon nanotubes were reported in reference [15]
for various ratios ρ between inner and outer radii of the
tubules. As in the case of plain cylinders (ρ = 0), these
calculations nearly coincide for x = 2.0 with the results
obtained within the MG approximation. However, in the
close-packed regime (x = 1.03) the strong electromag-
netic coupling between the tubes results in non-negligible
contributions from multipolar resonances. This multipo-
lar coupling provokes a redshift and a blueshift of the MG
dipolar resonances that are visible in the optical spectra
and the energy loss, i.e., the low-energy (u < 1/2) dipo-
lar mode with tangential symmetry and the high-energy
(u > 1/2) dipolar mode with radial symmetry. A compari-
son between these calculations and the experimentally de-
termined macroscopic p dielectric function of close-packed
carbon nanotubes [12] was also presented in reference [15],
showing an excellent agreement for ρ = 0.6, which yields
in the close-packed regime (x = 1.03) a filling fraction
f ∼ 0.5.

Finally, we look at the E-field pattern associated with
the electromagnetic resonances that are present in the
optical absorption and the energy loss. In Figure 11, we
show detailed pictures of the intensity of the electric field
and the corresponding charge density generated by nor-
mally incident p-polarized light impinging on our periodic
array of hollow (ρ = 0.6) carbon nanotubes with x = 2.

The frequency of the incident radiation has been cho-
sen to be ω1 = 5.2 eV and ω2 = 5.9 eV, corresponding to
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induced chargeE-field intensity

E=5.9 eV

E=5.2 eV

Fig. 11. The intensity of the electric field and the corresponding charge density generated by a normally incident p polarized
electromagnetic plane wave impinging on a periodic system of hollow (ρ = 0.6) carbon nanotubes with x = 2.0. Both the
electric field and the induced charge have been evaluated at two different frequencies: ω1 = 5.2 eV (the frequency at which the
optical absorption is maximum) and ω2 = 5.9 eV (the frequency at which the energy loss is maximum). White/dark areas mean
small/large values of the electric-field intensity and the induced charge.

E-field intensity Induced charge

E=6.10 eV

E=4.75 eV

Fig. 12. Same as Figure 11, for x = 1.03, ω1 = 4.75 eV, and ω2 = 6.1 eV.

the location of resonances in the optical absorption and
the energy loss, respectively. In this figure one clearly sees
that the incident radiation is exciting prototypical dipolar
tangential and radial dipolar plasmons at the surfaces of a
nearly isolated hollow cylinder. At ω1 = 5.2 eV, the inten-
sity of the electric field is maximum outside the nanotube
and the induced charge is clearly located on the outer sur-
face of the tubule, showing a tangential field pattern. At
ω2 = 5.9 eV, the E-field intensity is maximum in the hol-

low core of the nanotube and the induced charge is located
on both surfaces of each tubule, though the largest part of
it is located on the inner surface of the tube. These rep-
resent the main characteristics of a radial dipolar mode.

In the case of a close-packed structure, the incident
radiation excites a very localized tangential surface plas-
mon. This is illustrated in Figure 12, where we show pic-
tures of the E-field intensity and the corresponding charge
density generated by normally incident p-polarized light
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impinging on our periodic array of hollow (ρ = 0.6) carbon
nanotubes with x = 1.03. At ω1 = 4.75 eV, where the op-
tical absorption exhibits a maximum, the E-field intensity
is strongly enhanced in the region between the tubes and
the induced charge is clearly localized, showing a strongly
localized tangential field pattern. At ω2 = 6.1 eV, where
the energy loss is maximum, one clearly sees that the inci-
dent radiation is exciting a radial surface plasmon which is
very similar to that observed in the case of nearly isolated
nanotubes (see Fig. 11).

4 Summary and conclusions

We have reported extensive calculations of the effec-
tive electronic response of aligned multishell carbon nan-
otubes, of interest in the interpretation of absorption
spectra and electron energy-loss experiments. A local
graphite-like dielectric tensor has been assigned to every
point of the multishell tubules, and the effective dielectric
function of the composite has been computed by solving
Maxwell’s equations in media with tensor-like dielectric
functions. A MG-like approach appropriate to the case
of infinitely long anisotropic tubules has also been devel-
oped, showing that MG results are accurate as long as the
distance between the axis of neighboring plain tubules is
not smaller than ∼ 1.3 times the outer diameter of the
cylinders.

The effective response of carbon nanotubes has been
found to be sensitive to both the inner cavity of hollow
tubules and the anisotropy, which we have first investi-
gated with use of the MG approximation. Within this ap-
proach, we have analyzed the mode strengths and posi-
tions of tangential and radial surface plasmons, and have
investigated the effect of the anisotropy and the electro-
magnetic interactions between the tubes.

Finally, we have presented an analysis of the electric-
field pattern associated with the electromagnetic reso-
nances that are present in the optical absorption and the
energy loss. We have shown that incident p-polarized light
impinging on a periodic array of hollow carbon nanotubes
excites tangential and radial plasmons at the surfaces of
each tubule. In the case of isolated hollow nanotubes,
these surface plasmons are found to be prototypical dipo-
lar modes. In the close-packed regime, where nanotubes
are nearly touching, our calculations indicate that the in-
cident radiation excites a very localized tangential surface
plasmon, while the radial plasmon is found to be very sim-
ilar to that observed in the case of isolated nanotubes.
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