1,059 research outputs found

    Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy

    Get PDF
    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. [Figure: see text

    Molecular crosstalk between apoptosis, necroptosis, and survival signaling

    Get PDF
    Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research

    RIPK1 protects from TNF-α-mediated liver damage during hepatitis

    Get PDF
    Cell death of hepatocytes is a prominent characteristic in the pathogenesis of liver disease, while hepatolysis is a starting point of inflammation in hepatitis and loss of hepatic function. However, the precise molecular mechanisms of hepatocyte cell death, the role of the cytokines of hepatic microenvironment and the involvement of intracellular kinases, remain unclear. Tumor necrosis factor alpha (TNF-alpha) is a key cytokine involved in cell death or survival pathways and the role of RIPK1 has been associated to the TNF-alpha-dependent signaling pathway. We took advantage of two different deficient mouse lines, the RIPK1 kinase dead knock-in mice (Ripk1K45A) and the conditional knockout mice lacking RIPK1 only in liver parenchymal cells (Ripk1LPC-KO), to characterize the role of RIPK1 and TNF-alpha in hepatitis induced by concanavalin A (ConA). Our results show that RIPK1 is dispensable for liver homeostasis under steady-state conditions but in contrast, RIPK1 kinase activity contributes to caspase-independent cell death induction following ConA injection and RIPK1 also serves as a scaffold, protecting hepatocytes from massive apoptotic cell death in this model. In the Ripk1LPC-KO mice challenged with ConA, TNF-alpha triggers apoptosis, responsible for the observed severe hepatitis. Mechanism potentially involves both TNF-independent canonical NF-kappa B activation, as well as TNF-dependent, but canonical NF-kappa B-independent mechanisms. In conclusion, our results suggest that RIPK1 kinase activity is a pertinent therapeutic target to protect liver against excessive cell death in liver diseases

    Depletion of Beclin-1 Due to Proteolytic Cleavage by Caspases in the Alzheimer\u27s Disease Brain

    Get PDF
    The Beclin-1 protein is essential for the initiation of autophagy and recent studies suggest this function may be compromised in Alzheimer’s disease (AD). In addition, in vitro studies have supported a loss of function of Beclin-1 due to proteolytic modification by caspases. In the present study we examined whether caspase-cleavage of Beclin-1 occurs in the AD brain by designing a site-directed caspase-cleavage antibody based upon a known cleavage site within the protein at position D149. We confirmed that Beclin-1 is an excellent substrate for caspase-3 and demonstrate cleavage led to the formation of a 35 kDa C-terminal fragment labeled by our novel antibody following Western blot analysis. Application of this antibody termed Beclin-1 caspase-cleavage product antibody or BeclinCCP in frontal cortex tissue sections revealed strong immunolabeling within astrocytes that localized with plaque-regions and along blood vessels in all AD cases examined. In addition, weaker, more variable BeclinCCP labeling was also observed within neurofibrillary tangles that co-localized with the early tau conformational marker, MC-1 as well as the late tangle marker, PHF-1. Collectively, these data support a depletion of Beclin-1 in AD following caspase-cleavage

    Learning from sustainable development: education in the light of public issues

    Get PDF
    Education for sustainable development (ESD) is increasingly affecting environmental education policy and practice. In this article we show how sustainable development is mainly seen as a problem that can be tackled by applying the proper learning processes and how this perspective translates sustainability issues into learning problems of individuals. We present a different perspective on education in the context of sustainable development based on novel ways of thinking about citizenship education and emphasizing the importance of presenting issues of sustainable development as ‘public issues’, as matters of public concern. From this point of view, the focus is no longer on the competences that citizens must achieve, but on the democratic nature of the spaces and practices in which participation and citizenship can develop

    The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis

    Get PDF
    Although necrosis and necroinflammation are central features of many liver diseases, the role of programmed necrosis in the context of inflammation-dependent hepatocellular death remains to be fully determined. Here, we have demonstrated that the pseudokinase mixed lineage kinase domain-like protein (MLKL), which plays a key role in the execution of receptor interacting protein (RIP) lcinase-dependent necroptosis, is upregulated and activated in human autoimmune hepatitis and in a murine model of inflammation-dependent hepatitis. Using genetic and pharmacologic approaches, we determined that hepatocellular necrosis in experimental hepatitis is driven by an MLKL-dependent pathway that occurs independently of RIPK3. Moreover, we have provided evidence that the cytotoxic activity of the proinflammatory cytokine IFN-gamma in hepatic inflammation is strongly connected to induction of MLKL expression via activation of the transcription factor STAT1. In summary, our results reveal a pathway for MLKL-dependent programmed necrosis that is executed in the absence of RIPK3 and potentially drives the pathogenesis of severe liver diseases

    Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Get PDF
    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and <i>Halobacteria</i>) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes <i>Alphaproteobacteria</i>, <i>Betaproteobacteria</i> and <i>Gammaproteobacteria</i> within <i>Proteobacteria</i> phylum, and also members of <i>Bacteroidetes</i> phylum. The second most abundant lineages were <i>Actinobacteria</i> and <i>Firmicutes</i> at the Gulf of Lion site and <i>Chloroflexi</i> at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: <i>Alpha-</i>, <i>Gammaproteobacteria</i>, <i>Firmicutes</i> and <i>Actinobacteria</i>. In molecular surveys, the <i>Betaproteobacteria</i> group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea <i>levee</i>. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age) strongly influenced the community structure. In contrast, within the Gulf of Lion core, characterized by a homogeneous lithological structure of upper-slope environment, most detected groups were <i>Bacteroidetes</i> and, to a lesser extent, <i>Betaproteobacteria</i>. At both site, the detection of <i>Betaproteobacteria</i> coincided with increased terrestrial inputs, as confirmed by the geochemical measurements (Si, Sr, Ti and Ca). In the Gulf of Lion, geochemical parameters were also found to drive microbial community composition. Taken together, our data suggest that the palaeoenvironmental history of erosion and deposition recorded in the Western Mediterranean Sea sediments has left its imprint on the sedimentological context for microbial habitability, and then indirectly on structure and composition of the microbial communities during the late Quaternary

    Caspase-mediated cleavage of the exosome subunit PM/Scl-75 during apoptosis

    Get PDF
    Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD(369)↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed
    • …
    corecore