115 research outputs found

    Human emotion characterization by heart rate variability analysis guided by respiration

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksDeveloping a tool which identifies emotions based on their effect on cardiac activity may have a potential impact on clinical practice, since it may help in the diagnosing of psycho-neural illnesses. In this study, a method based on the analysis of heart rate variability (HRV) guided by respiration is proposed. The method was based on redefining the high frequency (HF) band, not only to be centered at the respiratory frequency, but also to have a bandwidth dependent on the respiratory spectrum. The method was first tested using simulated HRV signals, yielding the minimum estimation errors as compared to classical and respiratory frequency centered at HF band based definitions, independently of the values of the sympathovagal ratio. Then, the proposed method was applied to discriminate emotions in a database of video-induced elicitation. Five emotional states, relax, joy, fear, sadness and anger, were considered. The maximum correlation between HRV and respiration spectra discriminated joy vs. relax, joy vs. each negative valence emotion, and fear vs. sadness with p-value = 0.05 and AUC = 0.70. Based on these results, human emotion characterization may be improved by adding respiratory information to HRV analysis.Peer ReviewedPostprint (author's final draft

    Low dose anti-inflammatory radiotherapy for the treatment of pneumonia by covid-19 : A proposal for a multi-centric prospective trial

    Get PDF
    COVID-19 is a highly contagious viral infection with high morbidity that is draining health resources. The biggest complication is pneumonia, which has a serious inflammatory component, with no standardized treatment. Low-dose radiation therapy (LD-RT) is non-invasive and has anti-inflammatory effects that can interfere with the inflammatory cascade, thus reducing the severity of associated cytokine release and might be useful in the treatment of respiratory complications caused by COVID-19. This multicentric prospective clinical trial seeks to evaluate the efficacy of bilateral lung LD-RT therapy as a treatment for interstitial pneumonia in patients with COVID-19 for improving respiratory function. This prospective study will have 2 phases: I) an exploratory phase enrolling 10 patients, which will assess the feasibility and efficacy of low-dose lung irradiation, evaluated according to an increase in the PaO2/FiO2 ratio of at least 20% at 48-72 h with respect to the pre-irradiation value. If a minimum efficiency of 30% of the patients is not achieved, the study will not be continued. II) Non-randomized comparative phase in two groups: a control group, which will only receive pharmacological treatment, and an experimental arm with pharmacological treatment and LD-RT. It will include 96 patients, the allocation will be 1: 2, that is, 32 in the control arm and 64 in the experimental arm. The primary end-point will be the efficacy of LD-RT in patients with COVID-19 pneumonia according to an improvement in PaO2/FiO2. Secondary objectives will include the safety of bilateral lung LD-RT, an improvement in the radiology image, overall mortality rates at 15 and 30 days after irradiation and characterizing anti-inflammatory mechanisms of LD-RT by measuring the level of expression of adhesion molecules, anti-inflammatory cytokines and oxidative stress mediators. Trial registration: ClinicalTrial.gov NCT-04380818

    NEUCOGAR: A neuromodulating cognitive architecture for biomimetic emotional Al

    Get PDF
    © 2016 CESER PUBLICATIONS. This paper introduces a new model of artificial cognitive architecture for intelligent systems, the Neuromodulating Cognitive Architecture (NEUCOGAR). The model is biomimetically inspired and adapts the neuromodulators role of human brains into computational environments. This way we aim at achieving more efficient Artificial Intelligence solutions based on the biological inspiration of the deep functioning of human brain, which is highly emotional. The analysis of new data obtained from neurology, psychology philosophy and anthropology allows us to generate a mapping of monoamine neuromodulators and to apply it to computational system parameters. Artificial cognitive systems can then better perform complex tasks (regarding information selection and discrimination, attention, innovation, creativity,…) as well as engaging in affordable emotional relationships with human users

    Human emotion characterization by heart rate variability analysis guided by respiration

    Get PDF
    Developing a tool which identifies emotions based on their effect on cardiac activity may have a potential impact on clinical practice, since it may help in the diagnosing of psycho-neural illnesses. In this study, a method based on the analysis of heart rate variability (HRV) guided by respiration is proposed. The method was based on redefining the high frequency (HF) band, not only to be centered at the respiratory frequency, but also to have a bandwidth dependent on the respiratory spectrum. The method was first tested using simulated HRV signals, yielding the minimum estimation errors as compared to classical and respiratory frequency centered at HF band based definitions, independently of the values of the sympathovagal ratio. Then, the proposed method was applied to discriminate emotions in a database of video-induced elicitation. Five emotional states, relax, joy, fear, sadness and anger, were considered. The maximum correlation between HRV and respiration spectra discriminated joy vs. relax, joy vs. each negative valence emotion, and fear vs. sadness with p-value ≤ 0.05 and AUC ≥ 0.70. Based on these results, human emotion characterization may be improved by adding respiratory information to HRV analysis

    Unraveling a Neanderthal palimpsest from a zooarcheological and taphonomic perspective

    Get PDF
    Practically all archeological assemblages are palimpsests. In spite of the high temporal resolution of Abric Romaní site, level O, dated to around 55 ka, is not an exception. This paper focuses on a zooarcheological and taphonomic analysis of this level, paying special attention to spatial and temporal approaches. The main goal is to unravel the palimpsest at the finest possible level by using different methods and techniques, such as archeostratigraphy, anatomical and taxonomical identification, taphonomic analysis, faunal refits and tooth wear analysis. The results obtained are compared to ethnoarcheological data so as to interpret site structure. In addition, activities carried out over different time spans (from individual episodes to long-term behaviors) are detected, and their spatial extent is explored, allowing to do inferences on settlement dynamics. This leads us to discuss the temporal and spatial scales over which Neanderthals carried out different activities within the site, and how they can be studied through the archeological record

    Discerning the Ambiguous Role of Missense TTN Variants in Inherited Arrhythmogenic Syndromes

    Get PDF
    The titin gene (TTN) is associated with several diseases, including inherited arrhythmias. Most of these diagnoses are attributed to rare TTN variants encoding truncated forms, but missense variants represent a diagnostic challenge for clinical genetics. The proper interpretation of genetic data is critical for translation into the clinical setting. Notably, many TTN variants were classified before 2015, when the American College of Medical Genetics and Genomics (ACMG) published recommendations to accurately classify genetic variants. Our aim was to perform an exhaustive reanalysis of rare missense TTN variants that were classified before 2015, and that have ambiguous roles in inherited arrhythmogenic syndromes. Rare missense TTN variants classified before 2015 were updated following the ACMG recommendations and according to all the currently available data. Our cohort included 193 individuals definitively diagnosed with an inherited arrhythmogenic syndrome before 2015. Our analysis resulted in the reclassification of 36.8% of the missense variants from unknown to benign/likely benign. Of all the remaining variants, currently classified as of unknown significance, 38.3% showed a potential, but not confirmed, deleterious role. Most of these rare missense TTN variants with a suspected deleterious role were identified in patients diagnosed with hypertrophic cardiomyopathy. More than 35% of the rare missense TTN variants previously classified as ambiguous were reclassified as not deleterious, mainly because of improved population frequencies. Despite being inconclusive, almost 40% of the variants showed a potentially deleterious role in inherited arrhythmogenic syndromes. Our results highlight the importance of the periodical reclassification of rare missense TTN variants to improve genetic diagnoses and help increase the accuracy of personalized medicine

    Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae)

    Get PDF
    Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
    corecore