1,006 research outputs found

    Quantum teleportation and entanglement swapping with linear optics logic gates

    Full text link
    We report on the usage of a linear optics phase gate for distinguishing all four Bell states simultaneously in a quantum teleportation and entanglement swapping protocol. This is demonstrated by full state tomography of the one and two qubit output states of the two protocols, yielding average state fidelities of about 0.83 and 0.77, respectively. In addition, the performance of the teleportation channel is characterised by quantum process tomography. The non classical properties of the entanglement swapping output states are further confirmed by the violation of a CHSH-type Bell inequality of 2.14 on average.Comment: 11 pages, 3 figure

    Emotional and Adrenocortical Responses of Infants to the Strange Situation: The Differential Function of Emotional Expression

    Get PDF
    The aim of the study was to investigate biobehavioural organisation in infants with different qualities of attachment. Quality of attachment (security and disorganisation), emotional expression, and adrenocortical stress reactivity were investigated in a sample of 106 infants observed during Ainsworth’s Strange Situation at the age of 12 months. In addition, behavioural inhibition was assessed from maternal reports. As expected, securely attached infants did not show an adrenocortical response. Regarding the traditionally defined insecurely attached groups, adrenocortical activation during the strange situation was found for the ambivalent group, but not for the avoidant one. Previous ndings of increased adrenocortical activity in disorganised infants could not be replicated. In line with previous ndings, adrenocortical activation was most prominent in insecure infants with high behavioural inhibition indicating the function of a secure attachment relationship as a social buffer against less adaptive temperamental dispositions. Additional analyses indicated that adrenocortical reactivity and behavioural distress were not based on common activation processes. Biobehavioural associations within the different attachment groups suggest that biobehavioural processes in securely attached infants may be different from those in insecurely attached and disorganised groups. Whereas a coping model may be applied to describe the biobehavioural organisation of secure infants, an arousal model explanation may be more appropriate for the other groups

    High-fidelity transmission of entanglement over a high-loss freespace channel

    Full text link
    Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols require the distribution of entangled states between distant parties. Here we experimentally demonstrate the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite quantum communication scenario. We confirm that the received two-photon states are still highly entangled by violating the CHSH inequality by more than 5 standard deviations. From a fundamental point of view, our results show that the photons are virtually not subject to decoherence during their 0.5 ms long flight through air, which is encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added journal referenc

    Quantum teleportation using active feed-forward between two Canary Islands

    Full text link
    Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation

    A variable growth rate modification of von Bertalanffy's equation for aquaculture

    Full text link
    In aquaculture experiments of only a few months'duration, fish can approach their asymptotic size and growth rates may change greatly. One objective of aquaculture is to obtain a maximum economic return, and a growth model is needed to relate rate of growth to food consumption and other costs to find the optimum duration of growth cycles. Von Bertalanffy's equation is an asymptotic growth model which can be used for this purpose. A variable growth rate model was developed to describe fish growth oscillations observed in aquaculture experiments. This growth model provides improved estimates of von Bertalanffy's equation in aquaculture and can be used for an efficient evaluation of fish production during production cycles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73180/1/j.1365-2109.1994.tb00689.x.pd

    Quantum teleportation over the Swisscom telecommunication network

    Get PDF
    We present a quantum teleportation experiment in the quantum relay configuration using the installed telecommunication network of Swisscom. In this experiment, the Bell state measurement occurs well after the entanglement has been distributed, at a point where the photon upon which data is teleported is already far away, and the entangled qubits are photons created from a different crystal and laser pulse than the teleported qubit. A raw fidelity of 0.93+/-0.04 has been achieved using a heralded single-photon source.Comment: 6 pages, 7 figures, updated references on May 3rd. To be published in Journal of the Optical Society of America B, Feature issue "Optical Quantum-Information Science", February 200

    Attacks on quantum key distribution protocols that employ non-ITS authentication

    Full text link
    We demonstrate how adversaries with unbounded computing resources can break Quantum Key Distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not Information-Theoretically Secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced it was shown to prevent straightforward Man-In-The-Middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols we describe every single action taken by the adversary. For all protocols the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD-postprocessing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.Comment: 34 page

    Experimental entanglement distillation of mesoscopic quantum states

    Full text link
    The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding [1-3]. However, owing to the unavoidable loss in any real optical channel, the distribution of loss-intolerant entangled states is inevitably inflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, which is the process of extracting a small set of highly entangled states from a large set of less entangled states, can be used [4-14]. Here we report on the mesoscopic distillation of deterministically prepared entangled light pulses that have undergone non-Gaussian noise. The entangled light pulses [15-17] are sent through a lossy channel, where the transmission is varying in time similarly to light propagation in the atmosphere. By employing linear optical components and global classical communication, the entanglement is probabilistically increased.Comment: 13 pages, 4 figures. It's the first submitted version to the Nature Physics. The final version is already published on Nature Physics vol.4, No.12, 919 - 923 (2008

    Experimental Quantum Teleportation of a Two-Qubit Composite System

    Full text link
    Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with photonic or ionic qubits. Very recently long-distance teleportation and open-destination teleportation have also been realized. Until now, previous experiments have only been able to teleport single qubits. However, since teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2-5, teleportation of a composite system containing two or more qubits has been seen as a long-standing goal in quantum information science. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols such as multi-stage realization of quantum-relay, fault-tolerant quantum computation, universal quantum error-correction and one-way quantum computation.Comment: 16pages, 4 figure

    Fast optical source for quantum key distribution based on semiconductor optical amplifiers

    Get PDF
    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×1021.14\times 10^{-2} while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication
    corecore