663 research outputs found

    Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    Get PDF
    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres

    Theoretical and experimental studies in support of the geophysical fluid flow experiment

    Get PDF
    Computer programming was completed for digital acquisition of temperature and velocity data generated by the Geophysical Fluid Flow Cell (GFFC) during the upcoming Spacelab 3 mission. A set of scenarios was developed which covers basic electro-hydrodynamic instability, highly supercritical convection with isothermal boundaries, convection with imposed thermal forcing, and some stably stratified runs to look at large-scale thermohaline ocean circulations. The extent to which the GFFC experimental results apply to more complicated circumstances within the Sun or giant planets was assessed

    Solar Seismology from Space. a Conference at Snowmass, Colorado

    Get PDF
    The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure

    Magnetic Wreaths and Cycles in Convective Dynamos

    Full text link
    Solar-type stars exhibit a rich variety of magnetic activity. Seeking to explore the convective origins of this activity, we have carried out a series of global 3D magnetohydrodynamic (MHD) simulations with the anelastic spherical harmonic (ASH) code. Here we report on the dynamo mechanisms achieved as the effects of artificial diffusion are systematically decreased. The simulations are carried out at a nominal rotation rate of three times the solar value (3Ω⊙\Omega_\odot), but similar dynamics may also apply to the Sun. Our previous simulations demonstrated that convective dynamos can build persistent toroidal flux structures (magnetic wreaths) in the midst of a turbulent convection zone and that high rotation rates promote the cyclic reversal of these wreaths. Here we demonstrate that magnetic cycles can also be achieved by reducing the diffusion, thus increasing the Reynolds and magnetic Reynolds numbers. In these more turbulent models, diffusive processes no longer play a significant role in the key dynamical balances that establish and maintain the differential rotation and magnetic wreaths. Magnetic reversals are attributed to an imbalance in the poloidal magnetic induction by convective motions that is stabilized at higher diffusion levels. Additionally, the enhanced levels of turbulence lead to greater intermittency in the toroidal magnetic wreaths, promoting the generation of buoyant magnetic loops that rise from the deep interior to the upper regions of our simulated domain. The implications of such turbulence-induced magnetic buoyancy for solar and stellar flux emergence are also discussed.Comment: 21 pages, 16 figures, accepted for publication in Ap

    Dynamically-Driven Star Formation In Models Of NGC 7252

    Full text link
    We present new dynamical models of the merger remnant NGC 7252 which include star formation simulated according to various phenomenological rules. By using interactive software to match our model with the observed morphology and gas velocity field, we obtain a consistent dynamical model for NGC 7252. In our models, this proto-elliptical galaxy formed by the merger of two similar gas-rich disk galaxies which fell together with an initial pericentric separation of ~2 disk scale lengths approximately 620 Myr ago. Results from two different star formation rules--- density-dependent and shock-induced--- show significant differences in star formation during and after the first passage. Shock-induced star formation yields a prompt and wide-spread starburst at the time of first passage, while density-dependent star formation predicts a more slowly rising and centrally concentrated starburst. A comparison of the distributions and ages of observed clusters with results of our simulations favors shock-induced mechanism of star formation in NGC 7252. We also present simulated color images of our model of NGC 7252, constructed by incorporating population synthesis with radiative transfer and dust attenuation. Overall the predicted magnitudes and colors of the models are consistent with observations, although the simulated tails are fainter and redder than observed. We suggest that a lack of star formation in the tails, reflected by the redder colors, is due to an incomplete description of star formation in our models rather than insufficient gas in the tails.Comment: 11 pages, 9 figures, to be published in MNRA

    Three-Dimensional Simulations of Solar and Stellar Dynamos: The Influence of a Tachocline

    Full text link
    We review recent advances in modeling global-scale convection and dynamo processes with the Anelastic Spherical Harmonic (ASH) code. In particular, we have recently achieved the first global-scale solar convection simulations that exhibit turbulent pumping of magnetic flux into a simulated tachocline and the subsequent organization and amplification of toroidal field structures by rotational shear. The presence of a tachocline not only promotes the generation of mean toroidal flux, but it also enhances and stabilizes the mean poloidal field throughout the convection zone, promoting dipolar structure with less frequent polarity reversals. The magnetic field generated by a convective dynamo with a tachocline and overshoot region is also more helical overall, with a sign reversal in the northern and southern hemispheres. Toroidal tachocline fields exhibit little indication of magnetic buoyancy instabilities but may be undergoing magneto-shear instabilities.Comment: 14 pages, 5 color figures, to appear in Proc. GONG 2008/SOHO XXI Meeting on Solar-Stellar Dynamos as Revealed by Helio and Asteroseismology, held August 15-18, 2008, Boulder, CO, Astronomical Soc. Pac. Conf. Series, volume TB

    Global magnetic cycles in rapidly rotating younger suns

    Full text link
    Observations of sun-like stars rotating faster than our current sun tend to exhibit increased magnetic activity as well as magnetic cycles spanning multiple years. Using global simulations in spherical shells to study the coupling of large-scale convection, rotation, and magnetism in a younger sun, we have probed effects of rotation on stellar dynamos and the nature of magnetic cycles. Major 3-D MHD simulations carried out at three times the current solar rotation rate reveal hydromagnetic dynamo action that yields wreaths of strong toroidal magnetic field at low latitudes, often with opposite polarity in the two hemispheres. Our recent simulations have explored behavior in systems with considerably lower diffusivities, achieved with sub-grid scale models including a dynamic Smagorinsky treatment of unresolved turbulence. The lower diffusion promotes the generation of magnetic wreaths that undergo prominent temporal variations in field strength, exhibiting global magnetic cycles that involve polarity reversals. In our least diffusive simulation, we find that magnetic buoyancy coupled with advection by convective giant cells can lead to the rise of coherent loops of magnetic field toward the top of the simulated domain.Comment: 4 pages, 3 figures, from IAU 273: The Physics of Sun and Star Spot
    • …
    corecore