147 research outputs found
Review of the Neotropical millipede genus Pycnotropis CARL, 1914 (Diplopoda, Polydesmida, Aphelidesmidae)
A review of Pycnotropis is presented, with the description of 14 new species: P. goeldii n.sp., P. madeira n.sp., P. sigma n.sp. and P. urucu n.sp., all from Brazil, P. carli n.sp. from Ecuador, P. curvata n.sp., P. falcata n.sp., P. jeekeli n.sp., P. pallidicornis n.sp., P. similis n.sp., P. subfalcata n. sp., P. unapi n.sp., P. torresi n.sp. and P. zumbii n.sp., all from Peru. P. acuticollis (ATTEMS, 1899), is redescribed upon the holotype from Brazil. Based on abundant strictly topotypic material, P. tida (CHAMBERLIN, l94l), is considered as a subjective senior synonym of P. epiclysmus HOFFMAN, 1995 (syn.n.). A key has been compiled to all 26 species of this diverse genus, with notes on its distribution
A topological interpretation of the walk distances
The walk distances in graphs have no direct interpretation in terms of walk
weights, since they are introduced via the \emph{logarithms} of walk weights.
Only in the limiting cases where the logarithms vanish such representations
follow straightforwardly. The interpretation proposed in this paper rests on
the identity \ln\det B=\tr\ln B applied to the cofactors of the matrix
where is the weighted adjacency matrix of a weighted multigraph and
is a sufficiently small positive parameter. In addition, this
interpretation is based on the power series expansion of the logarithm of a
matrix. Kasteleyn (1967) was probably the first to apply the foregoing approach
to expanding the determinant of . We show that using a certain linear
transformation the same approach can be extended to the cofactors of
which provides a topological interpretation of the walk distances.Comment: 13 pages, 1 figure. Version #
Application of Equilibrium Models of Solution Hybridization to Microarray Design and Analysis
Background: The probe percent bound value, calculated using multi-state equilibrium models of solution hybridization, is shown to be useful in understanding the hybridization behavior of microarray probes having 50 nucleotides, with and without mismatches. These longer oligonucleotides are in widespread use on microarrays, but there are few controlled studies of their interactions with mismatched targets compared to 25-mer based platforms. Principal Findings: 50-mer oligonucleotides with centrally placed single, double and triple mismatches were spotted on an array. Over a range of target concentrations it was possible to discriminate binding to perfect matches and mismatches, and the type of mismatch could be predicted accurately in the concentration midrange (100 pM to 200 pM) using solution hybridization modeling methods. These results have implications for microarray design, optimization and analysis methods. Conclusions: Our results highlight the importance of incorporating biophysical factors in both the design and the analysis of microarrays. Use of the probe ‘‘percent bound’ ’ value predicted by equilibrium models of hybridization is confirmed to be important for predicting and interpreting the behavior of long oligonucleotide arrays, as has been shown for shor
TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity
Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4(+) T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4(+) T cells to IL-10-producing, TIGIT(+) FoxP3(+)-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-beta, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT(+) Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs
Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations
<p>Abstract</p> <p>Background</p> <p>One theoretical explanation for the relatively poor performance of <it>Brassica rapa </it>(weed) × <it>Brassica napus </it>(crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur.</p> <p>Results</p> <p>In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of <it>B. napus </it>crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of <it>B. rapa </it>weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population.</p> <p>Conclusion</p> <p>The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased.</p
Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment
) permits the bacteria to spread and become in contact with various skin and immune cells.-induced inflammation. CAMP factor may hijack host ASMase to amplify bacterial virulence to degrade and invade host cells. This work has identified both CAMP factor and ASMase as potential molecular targets for the development of drugs and vaccines against acne vulgaris
HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting
Infection and inflammation are able to induce diet-independent Na+-accumulation without commensurate water retention in afflicted tissues, which favors the pro-inflammatory activation of mouse macrophages
and augments their antibacterial and antiparasitic activity. While Na+-boosted host defense against the protozoan parasite Leishmania major is mediated by increased expression of the leishmanicidal NOS2 (nitric oxide synthase 2, inducible), the molecular mechanisms underpinning this enhanced antibacterial defense of mouse macrophages with high Na+ (HS) exposure are unknown. Here, we provide evidence that HS-increased antibacterial activity against E. coli was neither dependent on NOS2 nor on the phagocyte oxidase. In contrast, HS-augmented antibacterial defense hinged on HIF1A (hypoxia inducible factor 1, alpha subunit)-dependent increased autophagy, and NFAT5 (nuclear factor of activated T cells 5)-dependent targeting of intracellular E. coli to acidic autolysosomal compartments.
Overall, these findings suggest that the autolysosomal compartment is a novel target of Na+- modulated cell autonomous innate immunity.This work was supported by the Deutsche Forschungsgemeinschaft [WA
2539/4-1, 5-1, 7-1]; Deutsche Forschungsgemeinschaft (DE) [JA 1993/
4-1]; Universitätsklinikum Regensburg [Reform C]; NIHR Cambridge
Blood and Transplant Research Unit Organ Donation
Molecular characterization of regulatory polymorphisms in the promoter region of the STAT6 gene in a Gabonese population
Parasites remain competent invaders of host immunity. Their invasion strategies have proven to impact immunorelevant genes leading to diversity among gene families. We focussed on signal transducer and activator of transcription (STAT6) factor that plays a fundamental role in signal transduction and activation of transcription. Recent studies have highlighted the role of STAT6 variants in control of infection levels. We identified and investigated regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the STAT6 gene in a group of Gabonese individuals exposed to a variety of parasitic infections. Three promoter variants were identified in 40 individual subjects. We further validated these promoter variants for their allelic gene expression using transient transfection assays. One promoter variant, rs3024944 (G/C), revealed an altered expression of the marker gene. The identification of function-altering SNPs in the promoter may facilitate studying parasite susceptibility in association studies
Correlation of Inter-Locus Polyglutamine Toxicity with CAG•CTG Triplet Repeat Expandability and Flanking Genomic DNA GC Content
Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAG•CTG repeats to undergo further intergenerational expansion (their ‘expandability’) also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state
- …