13 research outputs found

    An in-the-wild study of learning to brainstorm: Comparing cards, tabletops and wall displays in the classroom

    Full text link
    © 2016 The Author 2016. Published by Oxford University Press on behalf of The British Computer Society. Single display interactive groupware interfaces have the potential to effectively support small group work in classrooms. Our work aimed to gain understanding needed to realize that potential. First, we wanted to study how learners use these large interactive displays, compared with a more traditional method within classrooms. Second, we wanted to fill gaps in the current understanding of the effectiveness of interactive tables versus walls. Third, we wanted to do this out of the laboratory setting, in authentic classrooms, with their associated constraints. We conducted an in-the-wild study, with 51 design students, working in 14 groups, learning the brainstorming technique. Each group practiced brainstorming in three classrooms: one with vertical displays (walls); another with multi-touch tabletops; and the third with pens and index cards. The published literature suggested that tabletops would be better than the other conditions for key factors of cooperative participation, mutual awareness, maintaining interest and affective measures. Contrary to this, we found that the horizontal and vertical displays both had similar levels of benefit over the conventional method. It was only for affective measures that tabletops were better than walls. All conditions were similar for our several measures of outcome quality. We discuss the implications of our findings for designing future classrooms

    Characterization of Indoor Extremely Low Frequency and Low Frequency Electromagnetic Fields in the INMA-Granada Cohort

    Get PDF
    Objective: To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-“INMA” population-based birth cohort. Methodology: The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9–10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Results: Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Conclusion: Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.This work was supported by the Spanish Ministry of Health (CIBERESP and FIS PI11/0610) and the Andalusia Regional Government, Council of Innovation, Science and Enterprise (Excellence Project P09-CTS-5488) and Council of Health (SAS PI-0675-2010)

    UbiqLog: a generic mobile phone based life-log framework

    Get PDF
    Smart phones are conquering the mobile phone market; they are not just phones they also act as media players, gaming consoles, personal calendars, storage, etc. They are portable computers with fewer computing capabilities than personal computers. However unlike personal computers users can carry their smartphone with them at all times. The ubiquity of mobile phones and their computing capabilities provide an opportunity of using them as a life logging device. Life-logs (personal e-memories) are used to record users' daily life events and assist them in memory augmentation. In a more technical sense, life-logs sense and store users' contextual information from their environment through sensors, which are core components of life-logs. Spatio-temporal aggregation of sensor information can be mapped to users' life events. We propose UbiqLog, a lightweight, configurable and extendable life-log framework that uses mobile phone as a device for life logging. The proposed framework extends previous research in this field, which investigated mobile phones as life-log tool through continuous sensing. Its openness in terms of sensor configuration allows developers to create exible, multipurpose life-log tools. In addition to that this framework contains a data model and an architecture, which can be used as reference model for further life-log development, including its extension to other devices, such as ebook readers, T.V.s, etc

    Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations

    Get PDF
    This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II

    Get PDF

    Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: a systematic literature review

    No full text
    The impact of the introduction and advancement in communication technology in recent years on exposure level of the population is largely unknown. The main aim of this study is to systematically review literature on the distribution of radiofrequency electromagnetic field (RF-EMF) exposure in the everyday environment in Europe and summarize key characteristics of various types of RF-EMF studies conducted in the European countries. We systematically searched the ISI Web of Science for relevant literature published between 1 January 2000 and 30 April 2015, which assessed RF-EMF exposure levels by any of the methods: spot measurements, personal measurement with trained researchers and personal measurement with volunteers. Twenty-one published studies met our eligibility criteria of which 10 were spot measurements studies, 5 were personal measurement studies with trained researchers (microenvironmental), 5 were personal measurement studies with volunteers and 1 was a mixed methods study combining data collected by volunteers and trained researchers. RF-EMF data included in the studies were collected between 2005 and 2013. The mean total RF-EMF exposure for spot measurements in European "Homes" and "Outdoor" microenvironments was 0.29 and 0.54 V/m, respectively. In the personal measurements studies with trained researchers, the mean total RF-EMF exposure was 0.24 V/m in "Home" and 0.76 V/m in "Outdoor". In the personal measurement studies with volunteers, the population weighted mean total RF-EMF exposure was 0.16 V/m in "Homes" and 0.20 V/m in "Outdoor". Among all European microenvironments in "Transportation", the highest mean total RF-EMF 1.96 V/m was found in trains of Belgium during 2007 where more than 95% of exposure was contributed by uplink. Typical RF-EMF exposure levels are substantially below regulatory limits. We found considerable differences between studies according to the type of measurements procedures, which precludes cross-country comparison or evaluating temporal trends. A comparable RF-EMF monitoring concept is needed to accurately identify typical RF-EMF exposure levels in the everyday environment
    corecore