394 research outputs found

    Quantum Tunneling Detection of Two-photon and Two-electron Processes

    Full text link
    We analyze the operation of a quantum tunneling detector coupled to a coherent conductor. We demonstrate that in a certain energy range the output of the detector is determined by two-photon processes, two-electron processes and the interference of the two. We show how the individual contributions of these processes can be resolved in experiments.Comment: 4 pages, 4 figure

    Adiabatic quantum pumping at the Josephson frequency

    Full text link
    We analyze theoretically adiabatic quantum pumping through a normal conductor that couples the normal regions of two superconductor/normal metal/superconductor Josephson junctions. By using the phases of the superconducting order parameter in the superconducting contacts as pumping parameters, we demonstrate that a non zero pumped charge can flow through the device. The device exploits the evolution of the superconducting phases due to the ac Josephson effect, and can therefore be operated at very high frequency, resulting in a pumped current as large as a few nanoAmperes. The experimental relevance of our calculations is discussed.Comment: 4 pages, 3 figure

    Finding the best proxies for the solar UV irradiance

    Full text link
    Solar UV emission has a profound impact on the upper terrestrial atmosphere. Because of instrumental constraints, however, solar proxies often need to be used as substitutes for the solar spectral variability. Finding proxies that properly reproduce specific spectral bands or lines is an ongoing problem. Using daily observations from 2003 to 2008 and a multiscale statistical approach, we test the performances of 9 proxies for the UV solar flux. Their relevance is evaluated at different time-scales and a novel representation allows all quantities to be compared simultaneously. This representation reveals which proxies are most appropriate for different spectral bands and for different time scales.Comment: to appear in Geoph. Res. Let

    Space Weather Community Operations Workshop: Planning for the Next Decade

    Get PDF
    Scenario: Japan suffers a great earthquake, a major tsunami, and a catastrophic nuclear meltdown. Telecommunications landlines and cell phone towers are inoperable in northern prefectures. This means that high-frequency (HF) radio becomes the primary means of communication to some affected areas. This also means that 3-hour forecasts of HF availability must be provided by space weather service organizations not affected by the disaster (Figure 1). Questions: How accurate are the HF predictions? How reliable is the service? How available is the information

    Resolving Ionospheric E-region Modeling Challenges: The Solar Photon Flux Dependence

    Get PDF
    The EVE instrument of the NASA Solar Dynamics Observatory (SDO) provides for the first time EUV and XUV measurements of the solar irradiance that adequately define the major source of ionization of the atmosphere. In our study we modeled the E-region of the ionosphere and analyzed how it is affected by the solar irradiance data obtained by EVE and contrast this with the S2000 Solar Irradiance model, used previously. The ionosphere has two major layers, the E-layer at 100 km, and the F-layer at 300 km. The difference in solar irradiances are small except at some wavelength bands, it is these differences that lead to a better understanding of the physical/chemical processes of the E-region. Observations of the ionospheric layers is best achieved using incoherent scatter radars (ISR). We have compared our model with ISR data available from Arecibo Puerto Rico in an effort to understand how specific solar irradiance wavelength bands affect the E-region. This study focuses on two specific wavelength bands 0.1-15 nm and 91-103 nm. Both are responsible for E-region production, but in quite different manners

    Which solar EUV indices are best for reconstructing the solar EUV irradiance ?

    Get PDF
    The solar EUV irradiance is of key importance for space weather. Most of the time, however, surrogate quantities such as EUV indices have to be used by lack of continuous and spectrally resolved measurements of the irradiance. The ability of such proxies to reproduce the irradiance from different solar atmospheric layers is usually investigated by comparing patterns of temporal correlations. We consider instead a statistical approach. The TIMED/SEE experiment, which has been continuously operating since Feb. 2002, allows for the first time to compare in a statistical manner the EUV spectral irradiance to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices, and the He I equivalent width. Using multivariate statistical methods such as multidimensional scaling, we represent in a single graph the measure of relatedness between these indices and various strong spectral lines. The ability of each index to reproduce the EUV irradiance is discussed; it is shown why so few lines can be effectively reconstructed from them. All indices exhibit comparable performance, apart from the sunspot number, which is the least appropriate. No single index can satisfactorily describe both the level of variability on time scales beyond 27 days, and relative changes of irradiance on shorter time scales.Comment: 6 figures, to appear in Adv. Space. Re

    Science through Machine Learning: Quantification of Poststorm Thermospheric Cooling

    Full text link
    Machine learning (ML) is often viewed as a black-box regression technique that is unable to provide considerable scientific insight. ML models are universal function approximators and - if used correctly - can provide scientific information related to the ground-truth dataset used for fitting. A benefit to ML over parametric models is that there are no predefined basis functions limiting the phenomena that can be modeled. In this work, we develop ML models on three datasets: the Space Environment Technologies (SET) High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched dataset of outputs from the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer-derived density dataset from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post-storm cooling in the middle-thermosphere. We find that both NRLMSIS 2.0 and JB2008-ML do not account for post-storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g. the 2003 Halloween storms). Conversely, HASDM-ML and CHAMP-ML do show evidence of post-storm cooling indicating that this phenomenon is present in the original datasets. Results show that density reductions up to 40% can occur 1--3 days post-storm depending on location and the strength of the storm

    Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre

    Get PDF
    A novel optical hydrogen sensor, based on the absorption change of the evanescent fields in a circular Pd-coated singlemode tapered fibre is presented. The proposed sensor is polarisation independent and its sensitivity is adjustable by means of the taper diameter, interaction length, and/or light wavelength. A simple light transmission measurement setup is used to test the sensor. The sensor is suitable for the detection of low hydrogen concentrations with high sensitivity and fast time response. Transmission changes as high as 60% are demonstrated
    corecore