907 research outputs found

    Non-commutative Nash inequalities

    Get PDF
    A set of functional inequalities - called Nash inequalities - are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative Lp spaces, where their relationship to Poincare and log-Sobolev inequalities are fleshed out. We prove Nash inequalities for a number of unital reversible semigroups

    Quantum logarithmic Sobolev inequalities and rapid mixing

    Get PDF
    A family of logarithmic Sobolev inequalities on finite dimensional quantum state spaces is introduced. The framework of non-commutative \bL_p-spaces is reviewed and the relationship between quantum logarithmic Sobolev inequalities and the hypercontractivity of quantum semigroups is discussed. This relationship is central for the derivation of lower bounds for the logarithmic Sobolev (LS) constants. Essential results for the family of inequalities are proved, and we show an upper bound to the generalized LS constant in terms of the spectral gap of the generator of the semigroup. These inequalities provide a framework for the derivation of improved bounds on the convergence time of quantum dynamical semigroups, when the LS constant and the spectral gap are of the same order. Convergence bounds on finite dimensional state spaces are particularly relevant for the field of quantum information theory. We provide a number of examples, where improved bounds on the mixing time of several semigroups are obtained; including the depolarizing semigroup and quantum expanders.Comment: Updated manuscript, 30 pages, no figure

    How fast do stabilizer Hamiltonians thermalize?

    Get PDF
    We present rigorous bounds on the thermalization time of the family of quantum mechanical spin systems known as stabilizer Hamiltonians. The thermalizing dynamics are modeled by a Davies master equation that arises from a weak local coupling of the system to a large thermal bath. Two temperature regimes are considered. First we clarify how in the low temperature regime, the thermalization time is governed by a generalization of the energy barrier between orthogonal ground states. When no energy barrier is present the Hamiltonian thermalizes in a time that is at most quadratic in the system size. Secondly, we show that above a universal critical temperature, every stabilizer Hamiltonian relaxes to its unique thermal state in a time which scales at most linearly in the size of the system. We provide an explicit lower bound on the critical temperature. Finally, we discuss the implications of these result for the problem of self-correcting quantum memories with stabilizer Hamiltonians

    Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre quadratures

    Get PDF
    Asymptotic approximations to the zeros of Hermite and Laguerre polynomials are given, together with methods for obtaining the coefficients in the expansions. These approximations can be used as a standalone method of computation of Gaussian quadratures for high enough degrees, with Gaussian weights computed from asymptotic approximations for the orthogonal polynomials. We provide numerical evidence showing that for degrees greater than 100100 the asymptotic methods are enough for a double precision accuracy computation (1515-1616 digits) of the nodes and weights of the Gauss--Hermite and Gauss--Laguerre quadratures.Comment: Submitted to Studies in Applied Mathematic

    Computation of the Marcum Q-function

    Get PDF
    Methods and an algorithm for computing the generalized Marcum Q−Q-function (Qμ(x,y)Q_{\mu}(x,y)) and the complementary function (Pμ(x,y)P_{\mu}(x,y)) are described. These functions appear in problems of different technical and scientific areas such as, for example, radar detection and communications, statistics and probability theory, where they are called the non-central chi-square or the non central gamma cumulative distribution functions. The algorithm for computing the Marcum functions combines different methods of evaluation in different regions: series expansions, integral representations, asymptotic expansions, and use of three-term homogeneous recurrence relations. A relative accuracy close to 10−1210^{-12} can be obtained in the parameter region (x,y,μ)∈[0, A]×[0, A]×[1, A](x,y,\mu) \in [0,\,A]\times [0,\,A]\times [1,\,A], A=200A=200, while for larger parameters the accuracy decreases (close to 10−1110^{-11} for A=1000A=1000 and close to 5×10−115\times 10^{-11} for A=10000A=10000).Comment: Accepted for publication in ACM Trans. Math. Soft

    Entropic functionals of Laguerre and Gegenbauer polynomials with large parameters

    Full text link
    The determination of the physical entropies (R\'enyi, Shannon, Tsallis) of high-dimensional quantum systems subject to a central potential requires the knowledge of the asymptotics of some power and logarithmic integral functionals of the hypergeometric orthogonal polynomials which control the wavefunctions of the stationary states. For the DD-dimensional hydrogenic and oscillator-like systems, the wavefunctions of the corresponding bound states are controlled by the Laguerre (Lm(α)(x)\mathcal{L}_{m}^{(\alpha)}(x)) and Gegenbauer (Cm(α)(x)\mathcal{C}^{(\alpha)}_{m}(x)) polynomials in both position and momentum spaces, where the parameter α\alpha linearly depends on DD. In this work we study the asymptotic behavior as α→∞\alpha \to \infty of the associated entropy-like integral functionals of these two families of hypergeometric polynomials

    Conical: an extended module for computing a numerically satisfactory pair of solutions of the differential equation for conical functions

    Get PDF
    Conical functions appear in a large number of applications in physics and engineering. In this paper we describe an extension of our module CONICAL for the computation of conical functions. Specifically, the module includes now a routine for computing the function R−12+iτm(x){{\rm R}}^{m}_{-\frac{1}{2}+i\tau}(x), a real-valued numerically satisfactory companion of the function P−12+iτm(x){\rm P}^m_{-\tfrac12+i\tau}(x) for x>1x>1. In this way, a natural basis for solving Dirichlet problems bounded by conical domains is provided.Comment: To appear in Computer Physics Communication

    Quantum Metropolis Sampling

    Get PDF
    The original motivation to build a quantum computer came from Feynman who envisaged a machine capable of simulating generic quantum mechanical systems, a task that is believed to be intractable for classical computers. Such a machine would have a wide range of applications in the simulation of many-body quantum physics, including condensed matter physics, chemistry, and high energy physics. Part of Feynman's challenge was met by Lloyd who showed how to approximately decompose the time-evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that basically acquired a monopoly for the simulation of interacting particles. Here, we demonstrate how to implement a quantum version of the Metropolis algorithm on a quantum computer. This algorithm permits to sample directly from the eigenstates of the Hamiltonian and thus evades the sign problem present in classical simulations. A small scale implementation of this algorithm can already be achieved with today's technologyComment: revised versio
    • …
    corecore