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a b s t r a c t

Conical functions appear in a large number of applications in physics and engineering. In this paper we
describe an extension of our module Conical (Gil et al., 2012) for the computation of conical functions.
Specifically, the module includes now a routine for computing the function Rm

−
1
2 +iτ

(x), a real-valued
numerically satisfactory companion of the function Pm

−
1
2 +iτ

(x) for x > 1. In this way, a natural basis for

solving Dirichlet problems bounded by conical domains is provided.
The module also improves the performance of our previous algorithm for the conical function

Pm

−
1
2 +iτ

(x) and it includes now the computation of the first order derivative of the function. This is also

considered for the function Rm
−

1
2 +iτ

(x) in the extended algorithm.

Program summary
Program Title:Module Conical
Program Files doi: http://dx.doi.org/10.17632/rpw5d8gdkg.1
Licensing provisions: CC by 4.0
Programming language: Fortran 90
External routines/libraries: Themodule Conical uses a Fortran 90 version of the routine dkia (developed by
the authors) for computing themodified Bessel functions Kia(x) and its derivative. This routine is available
at http://toms.calgo.org.
Nature of problem: These functions are the natural function basis for solving, for example, the Laplace’s
problem in spherical coordinates for two intersecting cones or for regions bounded by two intersecting
spheres, or by one or two confocal hyperboloids of revolutionwhenusing toroidal coordinates. The conical
function Pm

−
1
2 +iτ

(x) is also used in the Mehler–Fock integral transform for problems in potential and heat

theory,
Solution method: The algorithm uses different methods of computation depending on the function under
consideration (Pm

−
1
2 +iτ

(x) or Rm
−

1
2 +iτ

(x)) and the values of x, τ and m: numerical quadrature, asymptotic

expansions in terms of elementary functions, asymptotic expansions in terms of Bessel functions, asymp-
totic expansions for tau large and backward/forward recursion of three-term recurrence relations.
Restrictions: In order to avoid underflow/overflow problems in standard IEEE double precision arithmetic,
the admissible parameter ranges for computing the conical function Pm

−
1
2 +iτ

(x) in the routine conicp are:

−1 < x < 1, 0 < τ <= 100, 0 ≤ m ≤ 40

1 < x ≤ 100, 0 < τ ≤ 100, 0 ≤ m ≤ 100.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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When using the routines conicr and conicpr, the admissible parameter ranges for computing the
functions Pm

−
1
2 +iτ

(x) and Rm
−

1
2 +iτ

(x) are

1 < x ≤ 100, 0 < τ ≤ 100, 0 ≤ m ≤ 100.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Conical or Mehler functions are involved in a large number
of applications in different areas of physics. In particular, these
functions appear when solving the Laplace equation in spherical
coordinates for two intersecting cones [1] or for regions bounded
by two intersecting spheres, or by one or two confocal hyper-
boloids of revolution when using toroidal coordinates.

An extended version of ourmoduleConical [2] for the computa-
tion of conical functions is presented in this paper. The newmodule
includes now a routine for computing the function Rm

−
1
2 +iτ

(x), a
real-valued numerically satisfactory companion of the function
Pm

−
1
2+iτ

(x) for x > 1. The module also improves our previous

algorithm for the conical function Pm

−
1
2+iτ

(x) by considering now

more coefficients in some of the asymptotic expansions used for
computing the function in the region x > 1. The computation of the
first order derivatives of Pm

−
1
2+iτ

(x) and Rm
−

1
2 +iτ

(x) is also included

in the new module.

2. Theoretical background

Conical functions are solutions of the second order differential
equation

(1 − x2)
d2w
dx2

− 2x
dw
dx

−

(
τ 2 +

1
4

+
µ2

1 − x2

)
w = 0. (1)

We will restrict to integer positive values of the parameter µ
(µ = m ∈ Z+).

When −1 < x < 1, a real-valued satisfactory pair of so-
lutions of (1) is Pm

−
1
2 +iτ

(x) and P−m
−

1
2 +iτ

(x). Both functions can be
computed using our algorithm for Pm

−
1
2 +iτ

(x) implemented in con-
icp;
for computing P−m

−
1
2 +iτ

(x) the following relation can be used

P−m
−

1
2 +iτ

(x) =
π

cosh(πτ )
⏐⏐Γ (m +

1
2 + iτ )

⏐⏐2 Pm
−

1
2 +iτ

(x). (2)

When x > 1, a real-valued satisfactory pair of solutions of (1)

is Pm
−

1
2 +iτ

(x) and Rm
−

1
2 +iτ

(x) ≡ ℜ

{
e−iπmQm

−
1
2 +iτ

(x)
}

(the function

Qm
−

1
2 +iτ

(x) is complex-valued).

The Wronskian relation for Pm
−

1
2 +iτ

(x) and Rm
−

1
2 +iτ

(x), useful for
testing, is given by

W
{
Pm

−
1
2 +iτ

(x) , Rm
−

1
2 +iτ

(x)
}

=
π (e−τπ

+ sinh(τπ))

|Γ
(
−m +

1
2 + iτ

)
|
2
(cosh2(τπ))(1 − x2)

. (3)

The algorithm for computing the conical function Pm
−

1
2 +iτ

(x) was
described in [2]. In the new module Conical we also compute the

first order derivatives for Pm

−
1
2+iτ

(x) and Rm
−

1
2 +iτ

(x): the first order

derivative of Pm

−
1
2+iτ

(x) can be obtained using the relation

d
dx

Pm

−
1
2+iτ

(x) = −
1

√
x2 − 1

Pm+1

−
1
2+iτ

(x) +
mx

x2 − 1
Pm

−
1
2+iτ

(x). (4)

The first order derivative of Rm
−

1
2 +iτ

(x) satisfies the same relation

(4) with Rm+1

−
1
2+iτ

(x) and Rm

−
1
2+iτ

(x).

A preliminary algorithm for computing the function Rm
−

1
2 +iτ

(x)
was presented in [3] although the final algorithm in finite precision
arithmetic implemented in the routine conicr presents some dif-
ferences with respect to the first algorithm. We have also changed
the notation of the function with respect to the one used in that
reference; we are using now Rm

−
1
2 +iτ

(x) instead of Q̃m
−

1
2 +iτ

(x) for
simplicity.

Next we summarize the methods for computing the conical
function Rm

−
1
2 +iτ

(x).

2.1. Computation of Rm
−

1
2 +iτ

(x) for values of x close to 1

2.1.1. Small or moderate values of τ
To compute R0

−
1
2 +iτ

(x) and R1
−

1
2 +iτ

(x) wewill use the expansions

R 0
−

1
2 +iτ

(x) = ℜ

(
∞∑
k=0

( 1
2 − iτ

)
k

( 1
2 + iτ

)
k

(k!)2
zk
(
ψ(k + 1)

− ψ( 12 + iτ ) − lnw
))
,

R 1
−

1
2 +iτ

(x)

= ℜ

(√
x2 − 1

∞∑
k=0

( 1
2 − iτ

)
k

( 1
2 + iτ

)
k

(k!)2
1
2 z

k−1 ( 1
2

(
−1 + w2)

+ k
(
ψ(k + 1) − ψ( 12 + iτ ) − lnw

)))
,

(5)

where z and w are given by

z =
1
2 (1 − x), w =

√
x − 1
x + 1

, (6)

and ψ(α) = Γ ′(α)/Γ (α).
The only complex quantity in (5) is the function ψ( 12 + iτ ).

For computing this function we use an algorithm which computes
separately the real and imaginary parts of ψ( 12 + iτ ) avoiding, in
this way, the use of complex arithmetics when computing (5). The
algorithm is based on the use of the asymptotic expansion

ψ(α) ∼ lnα −
1
2α

−
1

12α2 +
1

120α4 −
1

252α6 + · · · , (7)

valid for α → ∞ in |phα| < π . We use this expansion if |α| ≥ 12
with 8 terms of the series (or less), and we use the recurrence
relation ψ(α) = ψ(α + 1) − 1/α for smaller values of |α|.
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Whenm ≥ 2 we will use the recursion relation

Rm+1
−

1
2 +iτ

(x) −
2mx

√
x2 − 1

Rm
−

1
2 +iτ

(x)

+
(
(m −

1
2 )

2
+ τ 2

)
Rm−1

−
1
2 +iτ

(x) = 0 (8)

in the direction of increasingm.

2.1.2. Large values of τ
A representation in terms of Kummer U−functions is used in

this case:

Rµ
−

1
2 +iτ

(x) ∼

√
π/2αµ+

1
2
(
x2 − 1

)− 1
4

×

∞∑
k=0

fk (ℜΦk cosφ + ℑΦk sinφ) ,
(9)

where φ = τ log(x +
√
x2 − 1), α = ln

( z+1
z

)
and z is given by

z =
1

2
√
x2 − 1

(
x +

√
x2 − 1

) . (10)

The functionsΦk are given in terms of Kummer U−functions as
follows

Φk =
( 1
2 − µ

)
kω

2µ−kU
( 1
2 + µ, 1 + 2µ− k, αω

)
, ω = iτ . (11)

The functions can be also written in terms of the Hankel func-
tions H (2)

µ (z). This representation makes simple separating the real
and imaginary parts ofΦk by using

H (2)
µ (z) = Jµ(z) − iYµ(z). (12)

For the computation of the Bessel functions Jµ(z), Yµ(z) we use
an algorithmwhich combines the use of series expansions, Debye’s
asymptotic expansions, asymptotic expansions for large z, Airy-
type asymptotic expansions and three-term recurrence relations.
This algorithm is implemented in themoduleBesselJY and it is also
included in the software package.

The functionsΦ0,Φ1 are given by

Φ0 = −
1
2 i

√
π (τ/α)µe

1
2 iατH (2)

µ

( 1
2ατ

)
,

Φ1 =
1
4α

√
π (τ/α)µe

1
2 iατ

(
iH (2)
µ

( 1
2ατ

)
+ H (2)

µ−1

( 1
2ατ

))
.

(13)

For computing Φn for n = 2, . . . we can use a recurrence
relation for the Kummer U−functions which gives

ωΦn+1 = (n − 2µ− αω)Φn + α(n −
1
2 − µ)Φn−1. (14)

From this, the following recurrence relations for both the real
and imaginary parts ofΦn+1 can be obtained:

ℜΦn+1 =
n − 2µ
τ

ℑΦn − αℜΦn +
α

τ
(n −

1
2 − µ)ℑΦn−1,

ℑΦn+1 = −
n − 2µ
τ

ℜΦn − αℑΦn −
α

τ
(n −

1
2 − µ)ℜΦn−1.

(15)

The first coefficients fk in (9) are given by

f0 = 1,

f1 =
b
2d
(2dz + d − 2z) ,

f2 =
b

24d2
(
12z2 + 12bz2 + d2 − 12d2z − 12d2z2 − 24bdz2

+ 12bd2z + 12bd2z2 + 3bd2 − 12bdz
)
,

(16)

where b = −µ−
1
2 and d = zα.

2.2. Computation of Rm
−

1
2 +iτ

(x) for moderate or large values of x

In this case we use the expansion

Rµ
−

1
2 +iτ

(x) = ℜ

(√
π/2

(
x2 − 1

)− 1
4 G(µ, τ ) e−iφ

×

∞∑
k=0

( 1
2 + µ

)
k

( 1
2 − µ

)
k

uk(τ ) + ivk(τ )
wk(τ )

(−z)k

k!

)
,

(17)

where z is given in Eq. (10), φ = τ log
(
x +

√
x2 − 1

)
,

G(µ, τ ) =
Γ
( 1
2 + µ+ iτ

)
Γ (1 + iτ)

, (18)

and
uk(τ ) + ivk(τ )

wk(τ )
=

1
(1 + iτ)k

, k = 0, 1, 2, . . . . (19)

We can compute uk(τ ), vk(τ ) and wk(τ ) from the recurrence rela-
tions
uk+1(τ ) = (k + 1)uk(τ ) + τvk(τ ),
vk+1(τ ) = (k + 1)vk(τ ) − τuk(τ ),
wk+1(τ ) =

(
(k + 1)2 + τ 2

)
wk(τ ),

(20)

with u0(τ ) = 1, v0(τ ) = 0, w0(τ ) = 1.
The real part of (17) can be obtained by writing

G(µ, τ ) = H(µ, τ )eiρ(µ,τ ), uk(τ ) + ivk(τ ) = rk(τ )eiσk(τ ), (21)

which gives

Rµ
−

1
2 +iτ

(x) =

√
π/2H(µ, τ )

(
x2 − 1

)− 1
4

×

∞∑
k=0

( 1
2 + µ

)
k

( 1
2 − µ

)
k

rk(τ )
wk(τ )

(−z)k

k!
cos(ψk),

(22)

where

ψk = τ log
(
x +

√
x2 − 1

)
− ρ(µ, τ ) − σk(τ ). (23)

The computation of the ratio of two gamma functions in (18)
is made using an algorithm for computing the gamma function for
complex values of the argument. The algorithm adapts for complex
arguments the scheme used for real values described in [4].

3. Overview of the software structure

The Fortran 90 package includes the main module Conical,
which includes the routines conicp, conicr and conicpr.

In the module Conical, the auxiliary module Someconstants is
used. This is a module for the computation of the main constants
used in the different routines. ThemoduleBesselJY (for the compu-
tation of Bessel functions) and AiryFunction (for the computation
of Airy functions) are used. The routines included in auxil.f90 are
also used in the module Conical.

4. Description of the individual software components

The Fortran 90 module Conical includes the public routine
conicp, which computes the conical functions Pm

−
1
2 +iτ

(x) for x >
−1, m ≥ 0 and τ > 0; the routine conicr, which computes the
function Rm

−
1
2 +iτ

(x), for x > 1 , m ≥ 0 and τ > 0 and the routine
conicpr, which computes both functions Pm

−
1
2 +iτ

(x), Rm
−

1
2 +iτ

(x)
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Fig. 1. Test of the performance of the expansion (9). The points where the value of the error when testing the recurrence relation (8) is greater than 10−12 are plotted.

and their first order derivatives for x > 1 , m ≥ 0 and τ > 0.
The calling sequences of these routines are

CALL conicp(x,mu,tau,pm,ierr)

where the input data are: x, mu and tau (arguments of the func-
tions). The outputs are the error flag ierr and the function value pm.
The possible values of the error flag are: ierr = 0, successful com-
putation; ierr = 1, computation failed due to overflow/underflow;
ierr = 2, arguments out of range.

CALL conicr(x,mu,tau,rm,ierr)

where the input data are: x, mu and tau (arguments of the func-
tions). The outputs are the error flag ierr and the function value rm.
The possible values of the error flag are: ierr = 0, successful com-
putation; ierr = 1, computation failed due to overflow/underflow;
ierr = 2, arguments out of range.

CALL conicpr(x,mu,tau,pm,pmd,rm,rmd,ierr)

where the input data are: x, mu and tau (arguments of the func-
tions). The outputs are the error flag ierr , the function values pm,
rm and the first order derivatives pmd, rmd. The possible values
of the error flag are: ierr = 0, successful computation; ierr = 1,
computation failed.

5. Testing the algorithm

For testing the accuracy of the expansions used to compute the
conical function Rm

−
1
2 +iτ

(x), we have first checked (8) written in the
form(
2mx/

√
x2 − 1

)
Rm

−
1
2 +iτ

(x) −
(
(m −

1
2 )

2
+ τ 2

)
Rm−1

−
1
2 +iτ

(x)

Rm+1
−

1
2 +iτ

(x)
= 1.

(24)

This check fails close to the zeros of Rm+1
−

1
2 +iτ

(x); in this case, we
can consider the alternative test

Rm+1
−

1
2 +iτ

(x) +
(
(m −

1
2 )

2
+ τ 2

)
Rm−1

−
1
2 +iτ

(x)(
2mx/

√
x2 − 1

)
Rm

−
1
2 +iτ

(x)
= 1. (25)

Because the zeros of Rm+1
−

1
2 +iτ

(x) and Rm
−

1
2 +iτ

(x) are interlaced,
both tests will not fail simultaneously. We can therefore take the
minimum of both errors. We have considered these tests for the
expansions described in Sections 2.1.2 (x small) and 2.2 (x large).
Fig. 1 shows the points where the minimum value of the error of
the tests (24) and (25) when using (9) is greater than 10−12. In

the algorithm, we have fixed N = 7 the number of terms used in
the expansion. Random points have been generated in the domain
(x, τ ) ∈ (1.001, 1.05) × (15, 100). As can be seen, for m = 1
(upper figure) the use of the expansion (9) allows to compute the
function values with an accuracy better than 10−12 for values of τ
greater than 20 when x is close to 1. The accuracy of the expansion
worsens as m increases, as can be seen also in Fig. 1 (lower figure)
where the same test is considered for m = 5. Therefore, one has
to use an alternative method of computation for moderate/large
values of m as, for example, the use of the recurrence relation (8)
starting from R0

−
1
2 +iτ

(x) and R1
−

1
2 +iτ

(x).

Fig. 2 shows the same tests (24) and (25) for the expansion (17)
and for µ ≡ m = 1. The domain where the random points have
been generated is now (x, τ ) ∈ (1.2, 100) × (0, 100). As can be
seen in the figure, there is some loss of accuracywhen τ is large and
x is moderate/large. In any case, we have checked that the accuracy
was always better than 5 10−12.

For testing the expansions for R0
−

1
2 +iτ

(x) and R1
−

1
2 +iτ

(x) of Sec-
tion 2.1.1, we have used theWronskian relation given in (3). In this
case, we have

P1
−

1
2 +iτ

(x)R0
−

1
2 +iτ

(x) − P0
−

1
2 +iτ

(x)R1
−

1
2 +iτ

(x)

=
e−πτ

+ sinh(πτ )

cosh(πτ )
√
x2 − 1

. (26)

Fig. 3 shows the points where the value of the error in the
Wronskian relation (26) is greater than 10−12.

The accuracy of the final algorithm for Rm
−

1
2 +iτ

(x) has been
tested by computing the Wronskian relation given in (3) for a
very large number of random points in the parameter domain
(x, m τ ) ∈ (1.001, 100) × (0, 100) × (0, 100). The algorithm for
the conical function Pm

−
1
2+iτ

(x) was improved by considering more

coefficients in some of the asymptotic expansions used for com-
puting the function in the region x > 1. We have checked that the
accuracy of the Wronskian test (3) is close to 10−12 in the whole
parameter domain and better than 10−13 for a large fraction of the
tested parameter values.

6. Test run description

The Fortran 90 test program testcon.f90 includes the computa-
tion of 20 values of the functions Pm

−
1
2+iτ

(x), Rm
−

1
2 +iτ

(x) and their first

order derivatives and their comparison with the corresponding
pre-computed results.
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Fig. 2. Test of the performance of the expansion (17) for µ ≡ m = 1. The points where the value of the error in the recurrence relation (8) is greater than 10−12 are plotted.

Fig. 3. Test of the performance of the expansions given in (5). The points where the value of the error in the Wronskian relation (26) is greater than 10−12 are plotted.
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