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The original motivation to build a quantum computer came from Feynman [1] who envisaged
a machine capable of simulating generic quantum mechanicadystems, a task that is believed to
be intractable for classical computers. Such a machine wodlhave a wide range of applications
in the simulation of many-body quantum physics, including ondensed matter physics, chemistry,
and high energy physics. Part of Feynman’s challenge was méty Lloyd [2] who showed how to
approximately decompose the time-evolution operator of iteracting quantum particles into a short
sequence of elementary gates, suitable for operation on a gotum computer. However, this left
open the problem of how to simulate the equilibrium and statt properties of quantum systems. This
requires the preparation of ground and Gibbs states on a quatum computer. For classical systems,
this problem is solved by the ubiguitous Metropolis algoritim [3], a method that basically acquired
a monopoly for the simulation of interacting particles. Here, we demonstrate how to implement a
guantum version of the Metropolis algorithm on a quantum conputer. This algorithm permits to
sample directly from the eigenstates of the Hamiltonian andhus evades the sign problem present in
classical simulations. A small scale implementation of tlsialgorithm can already be achieved with
today'’s technology.
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1 Introduction

Since the early days of quantum mechanics, it has been tlear is a fundamental difficulty in studying
many-body quantum systems: the configuration space — H#peace — of a collection of particles grows
exponentially with the number of particles. Many of the impat breakthroughs in quantum physics dur-
ing the 20th century have resulted from efforts to addreisgattoblem, leading to fundamental theoretical
and numerical methods to approximate solutions of the nimdy Schrodinger equation. However, most
of these methods are limited to weakly interacting parsiclefortunately, it is precisely when the interac-
tions are strong that the most interesting physics arisetabie examples include high-superconductors,
electronic structure in large molecules, and quark confarenm quantum chromodynamics.

The configuration-space explosion problem is not uniquaitntum mechanics: the task of simulating
interactingclassical particles is challenging for the same reason. It was onlf thie advent of computers
in the 1950’s that a systematic way of simulating classicahyabody systems was made possible. In
their seminal paperf_[3] Metropoliet al. devised a general method to calculate the properties of any
substance comprising individual molecules with classstatistics. This landmark paper is a cornerstone
in the simulation of interacting systems and has had a hiaesitce on a wide variety of fields (see e.g.
[4l5,[€]). The Metropolis method can also be used to simwaettain quantum systems by a “quantum-to-
classical map”[[l7]. Unfortunately, this quantum Monte ©@artethod is only scalable when the mapping
conserves the positivity of the statistical weights, arits fam the case of fermionic systems due to the
infamous sign-problem.

As the reality of quantum computers comes closer, it is aluoi revisit the original motivation of
Feynman for building a quantum simulator and to develop a&gdmethod, suitable for quantum com-
puting machines, to calculate the properties of any substaamprising interacting quantum molecules.
Such an algorithm would have a multitude of applicationgjdantum chemistry, it could be used to com-
pute the electronic binding energy as a function of the doatds of the nuclei, thus solving the central
problem of interest. In condensed matter physics, it coldd e used to characterize the phase diagram
of the Hubbard model as a function of filling factor, intefantstrength, and temperature. Finally, it could
conceivably be used to predict the mass of elementary fesmtisolving a central problem in high energy
physics.

The seminal work of Lloyd [2] demonstrated that a quantum mot@r can reproduce the dynamical
evolution of any quantum many-body system. It did not adsireswever, the crucial problem of initial
conditions: how to efficiently prepare the quantum compiatarstate of physical interest such as a thermal
or ground state. Ground states could in principle be prejpasing the quantum phase estimation algorithm
[8l19], but this method is in general not scalable, becausgyitires a variational state with a large overlap
with the ground state. Methods are known for systems wittfation free interactions [10] or systems that
are adiabatically connected to trivial Hamiltonians|[14ddf such conditions are not generically satisfied.
Terhal and Divincenzd [12] suggested two approaches of hgwaatum computer could sample from
the thermal state of a system. The first suggestion is alateckto the metropolis rule, yet left open the
problem of how one could get around the no-cloning resultandd construct local updates which can be
rejected. This shortcoming immediately leads to an expt@ennning time of the algorithm, as already
discussed in their paper. The second approach of prepdrémnmal states is by simulating the system’s
interaction with a heat bath. However, this procedure seemsoduce rather large errors when run on a
guantum computer with finite resources, and a precise framew describe these errors seems to be out of
reach. Moreover, certain systems like polymers [13], himaixtures [14] and critical spin chains [15,116]
experience extremely slow relaxation when put into intéoaowith a heat bath. The Metropolis dynamics
solve this problem by allowing transformations that areptotsically achievable, speeding up relaxation
by many orders of magnitude and bridging the microscopicratakation time scales; this freedom s to a
large extent responsible for the tremendous empiricaleascof the Metropolis method.

In this paper we propose a direct quantum generalizatidmeogtassical Metropolis algorithm and show
how one iteration of the algorithm can be implemented in poiwial time on a quantum computer. Our
guantum algorithm is not affected by the aforementioned pigblem and can be used to prepare ground
and thermal states of generic quantum many-body systensgnimoand fermionic. Like the classical
Metropolis algorithm, the quantum Metropolis algorithmist expected to reach the ground state of an
arbitrary Hamiltonian in polynomial time. The ability togpare the ground state of a general Hamiltonian



in polynomial time would allow to solve QMA-complete probis. However, as a rule of thumb it always
seems possible to define an update strategy for which theoptdis algorithm thermalizes efficiently if
the physical system thermalizes in polynomial time. Theeere obvious reasons why the same should
not be true for the quantum Metropolis algorithm. It alsoerits all the flexibility and versatility of the
classical method, leading, for instance, to a quantum gdimation of simulated annealingl [6].

2 Summary of results

In this section, we present a sketch of how the quantum Melioplgorithm works. Details and general-
izations will be worked out in later sections.

To set the stage for the quantum Metropolis algorithm, Idfirssrecall the classical version. We can
assume for definiteness that the system is composedwb-level particles, i.e., Ising spins. A lattice of
100 spins ha!% different configurations, so it is inconceivable to avertigam all. The key insight of
Metropoliset. al. was to set up a rapidly mixinglarkov chain obeying detailed balance that samples from
the configurations with the most significant probabiliti€kis can be achieved by randomly transforming
an initial configuration to a new one (e.g. by flipping a rantloselected spin): if the energy of the new
configuration is lower than the original, we retain the mdwet if the energy is larger, we only retain
the move with probabilitexp (8(Esq — Fnew)), WhereE is the energy of the configurations afddhe
inverse temperature.

The challenge we address is to set up a similar process inutdnggm case, i.e., to initiate an ergodic
random walk on the eigenstates of a given quantum Hamiltowith the appropriate Boltzmann weights.
In analogy to a spin flip, the random walk can be realized byhdaen local unitary, and theove should
be accepted or rejected following the Metropolis rule. Ereae, however, three obvious complications: 1)
We do not know what the eigenvectors of the Hamiltonian ares {5 precisely one of the problems that
we want to solve). 2) Certain operations, such as energyuneagnts, are fundamentally irreversible in
guantum mechanics, but the Metropolis method requirestiegg hence undoing, certain transformations.
3) One has to devise a criterion that proves that the fixedt pdithe quantum random walk is the Gibbs
state.

To address the first obstacle, we assume for simplicity tlmtHtamiltonian has non-degenerate com-
mensurate eigenvaluds, and denote the corresponding eigenvectors. In the supplementary mate-
rial, it is shown that those conditions are unnecessary. &vensake use of the phase estimation algo-
rithm [17,[18,[8/ 18] to prepare a random energy eigenstadenagasure the energy of a given eigen-
state. Then, each quantum Metropolis step (depicted in[Bidakes as input an energy eigenstatg
with known energyFE;, and applies a random local unitary transformatigncreating the superposition
Cli) = Y, xk|vr). C could be a bit-flip at a random location like in the classicatting, or some
other simple transformation. The phase estimation algorits now used in a coherent way, producing
> @k |vk) | Ex). At this point, we could measure the second register to reéithe energye;, and accept
or reject the move following the Metropolis prescriptionowever, such an energy measurement would
involve an irreversible collapse of the wave function, whidll make it impossible to return to the original
configuration in the case of a reject step.

Classically, we get around this second obstacle by keepaugyaof the original configuration in the
computer’'s memory, so a rejected move can be easily undom@rtunately, this solution is ruled out in
the quantum setting by the no-cloning theorén [20]. The keé solution is to engineer a measurement
that reveals as little information as possible about the stawe, and therefore only slightly disturbs it. This
can be achieved by a measurement that only reveals one Ipitoofriation—accept or reject the move—
rather than a full energy measurement. The circuit that igeeg this binary measurement is shown at Fig.
(. It transforms the initial state);) into

> @i FLONENER) (1) + ) aj/1 = filve)| Ei)| Ex) [0)
k k
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where fi = min (1,exp (—8(Ex, — E;))). The state can be seen as a coherent superposition of accept-



ing the update or rejecting it. The amplitudef,§\/f_,i correspond exactly to the transition probabilities
|zt |2 fi of the classical Metropolis rule. The measurement is cotegdlby measuring the last qubit in the
computational basis. The outcorfié will project the other registers in the stdtg). Upon obtaining
this outcome, we can measure the second register to leanethenergyr;, and use the resulting energy
eigenstate as input to the next Metropolis step.

A measurement outconi@) signals that the move must be rejected, so we must returie ioplut state
i) As ;") is orthogonal to tde; ) we actually work in a simple 2-dimensional subspace, i.atatgin
such a case, itis possible to go back to the initial state iteaative scheme similar to the one employed by
Marriott and Watrous in the context of quantum Merlin Artlamnplification [21]. The circuitimplementing
this process is shown in Fi§] 2. In essence, it repeatedljeimgnts two binary measurements. The first
is the one described in the previous paragraph. The secomdafter a basis change, determines if the
computer is in the eigenstate;) or not. A positive outcome to the latter measurement imghes we
have returned to the input state, completing the rejeciioithe case of a negative outcome, we repeat
both measurements. Every sequence of these two measusenasna constant probability of achieving
the rejection, so repeating recursively yields a successgtility exponentially close to 1.

The quantum Metropolis algorithm can be used to generatquesee ofn stateg¢;), j =1,...,m
that reproduce the statistical averages of the thermal gtat= e =" / Z for any observable:

1 m

— > (9| X|é5) = TeXp+ O (1/v/m). )
j=1
To show that the fixed point of the quantum random walk is tHeb&istate, we developed the theory

of quantum detailed balance. Let {|;)} be a complete basis of the physical Hilbert space anfiigtbe
a probability distribution on this basis. Assume that a cletgly positive magf obeys the condition

VPP (Uil E([Yn) (Y )|1) = /PiDj (Ym|E(15) (i) [¢hn)-

Theno = >, pi|vs) (| is a fixed point of€. Thequantum detailed balance condition only ensures that
the thermal stateq is a possible fixed point of the quantum Metropolis algorithithe uniqueness of
this fixed point as well as the convergence rate to it depenth@rchoice of the set of random unitaries
{C}. If the set of moves are chosen such that the fiaw ergodic, the uniqueness of the fixed point is
ensured. This condition can be satisfied by choos$ifi§ to be a universal gate set[22]. The Metropolis
step obeys thguantum detailed balance condition, if the probability of applying a specift¢ is equal to
the probability of applying its conjugat@t. This can be seen as the quantum analogue of the classical
symmetry condition for the update probability. In some saseven suffices to just apply the same local
unitary C at every step of the algorithm (see Flg. 4). In this case, itiesunitaryC' has to be Hermitian
and has to ensure ergodicity. The local unitary can be seémtwe ‘non-local’ transitions between the
eigenstates because it is followed by a phase estimatiaeguoe.

Even though an implementation of this algorithm for full lscguantum many-body problems may
be out of reach for todays technological means, we have mie$an algorithm that is indeed scalable
to system sizes that are interesting for actual physicalilsiions. A small scale implementation of the
algorithm that can be achieved with present day technolegyedsented in the later sections. Moreover,
a discussion is included that sketches the basic stepsszgder a simulation of some notoriously hard
guantum many-body problems. Like in the classical settirggdonvergence rate and hence the runtime
of the algorithm is dictated by the spectral gap of the ststibanap. The scaling of the gap depends on
the respective problem Hamiltonian and the choice of updgfg. Just as for the classical Metropolis
algorithm, efficient thermalization is of course not exgecfor an arbitrary Hamiltonian. This would
allow one to solve QMA-complete problems in polynomial tif@8,[24,[25]. It is however expected that
the algorithm will thermalize if the physical system of irgst thermalizes. The inverse gap of the quantum
Metropolis map for the XX-chain in a transverse magneticfeti7”’ = 0 with a simple single spin flip
update as shown in Fig] 4. This plot indicates that the gafesdike O(1/N) with N the number of
spins, even at criticality. To prove a polynomial scalingreff gap for more complex Hamiltonians remains
a challenging open problem. Also, it is well known that theick of update§C'} can have a dramatic
impact on the convergence rate of the Markov chain in thesidaksetting. Finding good updates in the



guantum setting is a very interesting open question, atfhalbie above example suggests that the problem
might be simpler in the quantum than in the classical case.algorithm can be seen as a classical random
walk on the eigenstates of the Hamiltonian. All samples htes tcomputed with respect to the actual
eigenstates. This is why our method is suitable for the satmn of fermionic systems by exploiting the
Jordan - Wigner transformation [29] as discussed_in [30} fédrmionic sign problem is therefore not an
issue for the quantum Metropolis algorithm. It is worth ngtthat an additional quadratic speedup might
be achievable using the methods|ofl[26,(27, 28].

3 Description of the quantum Metropolis algorithm

In this section, we provide a more elaborate descriptiomefjuantum Metropolis algorithm. The funda-
mental building block is the quantum phase estimation élyor(see section5); throughout this section we
assume that the phase estimation algorithm works perféetlyiven an eigenstate;) of the Hamiltonian

H with energyFE;, we assume that the quantum phase estimation citcimtplements the transformation

[9i)|0) = [¢i) | Ei)

whereE; is encoded with- bits of precision. The fact that errors inevitably occuridgrquantum phase
estimation will be dealt with in sectidd 4. The algorithm sithrough a number of steps4 and, just as in
the classical case, the total number of iterations of thieg@adure is related to the autocorrelation times of
the underlying stochastic map. As analyzed in the next@edinis procedure obeys the quantum detailed
balance condition and hence allows to sample from the Gitalbs.sThe different steps are also depicted in
Fig.[3.

Step 0: Initialize the quantum computerin a convenient state, |6(.. . 0). We need 4 quantum registers
in total. The first one will encode the quantum states of theukted system, while the other 3 registers
are ancillas that will be traced out after every individuatkbpolis step. The second register consists of
r qubits and encodes the energy of the incoming quantum sitlier Wwits of precision (bottom register
in Fig. [da). The third register is the one used to implemeatghantum phase estimation algorithm, also
with r qubits (top registe]1a). The fourth register is a Bngubit that will provide the randomness for
accepting or rejecting the Metropolis step.

Step 1: Re-initialize the three ancilla registers and implemeatghantum phase estimation based circuit
depicted in Fig[1la followed by a measurement of the secagistes. This prepares an eigenstate with
energyF; and associated energy registey). The upper ancillas are left in the staf®” as we assumed
perfect phase estimation. The global state is now

[v:)| E;)|0)]0)

Step 2: The next step is depicted in Fig. 1b. Assume that we have dkdiiset of unitarie§ = {C'} that
can be implemented efficiently; those will correspond togheposed moves or updates of the algorithm,
just like one does for instance spin flips in the case of adasMonte Carlo. Just as in the classical case, the
exact choice of this set of unitaries does not really matdoiag as it is rich enough to generate all possible
transitions; the convergence time will, however, depentherparticular choice of moves. The unitary
is drawn randomly from the sétaccording to some probability measute(C). It is only necessary that
the probability of choosing & is equal to the probability of choosirg', i.e. du(C) = du(CT), as this is
dictated by the requirement that the process obeys detzdlledice, cf. sectidn 4.2.

The new state can be written as a superposition of the egfesst

Closy =Y ailon)
k

Implement the coherent quantum phase estimation stepfiggkici Fig.[1b, which results in the state



S wilvn) = 3 @l | B Er)[0).
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Note thatF, is only encoded with a precision obits, so that in practice there will be a lot of degeneracies.
Finally, implement the unitary¥ (Ey, E;) (Fig. [b) which is a one-qubit operation conditioned on the
value of the 2 energy registers:

wiens) = (Ve ) @
fie = min(l,exp(—8(Ex — E;))). 3)

The system is now in the state
> @i LI ENE1) + Y ai /1 — filn)| Ei) Ex)|0).
k k

For later reference, the product of the three unitafiethe phase estimation step, aidis calledU (see
Fig.[b).

Step 3: Measure the single ancilla qubit in the computational ba8isneasurement outcomecorre-
sponds to an acceptance of the move and collapses the $tate in

S wi/ il D B ).
k

In the case of this accept move, we can next measure the ggister which prepares a new eigenstate
|4), and follow that by an inverse quantum phase estimation 3tieis leads to the state

Y1) E3)]0)]1)
) 2
with probability proportional t({x}g\/f,g . This state will be the input for the next step in the itenatid
the Metropolis algorithm: go back to step 1 for this nextaten. Note that the sequenée— @, — L
depicted in Fig[ B exactly corresponds to this sequencetebga

A measuremend) in the single ancilla qubit signals a reject of the updatethis case, first apply the
gateUT, and then go to step 4.

Step 4: Let us first define the Hermitian projectaps and@,, made up of the gates defined in step 3
including the measurement on the ancilla:

Q = U(IxIalx|0)(0)U
Q1 = UlIelele[1)(1)U

Let us also define the Hermitian projectdtsand P, as

By o= 3 [a)wel @ |ENE|0I0T
i Eo#E;

Po= Z Z [Va) (Wa| @ |EN(E;)| @11
i E.—E;

Here equality (or inequality) means that the firdtits of the energies do (not) coincide. This measurement
P, can easily be implemented by a phase estimation step dejiickég.[Ic.



The fourth step of the algorithm now consists of a sequencaezsurements (see Fig. 2). First we
implement the von Neumann measurement define® hif the outcome isP;, then we managed to pre-
pare a new eigenstae, ) with the same energy as the initial ojng), and therefore succeeded in undoing
the measurement. Go to step 1. If the outcomg&jiswe do the von Neumann measuremént Inde-
pendent of the outcome, we again meas@yeand if the outcome i$;, we achieved our goal, otherwise
we continue the recursion (see Fig. 3). It happens that thleghility of failure decreases exponentially
in the number of iterations (see sectfonl 3.1) , and theref@rdave a very good probability of achieving
our goal. In the rare occasion where we do not converge afiex-apecified number of steps, we abort the
whole Monte Carlo simulation and start all over.

This finishes the description of the steps in the algorithm.

3.1 Running time of the rejection procedure:

Let us discuss the convergence of the reject step more glosehlready explained, the algorithm should
prepare a new state with the same energy as the originabpirethe case of a reject move. As shown in
Fig.[3, we will do this by repeating a sequence of two diffétEnary measuremenfs andQ;. The recur-
sion stops, whenever the measurement outcBirie obtained, wheré; is the projector on the subspace
of energyE;. Note that it is crucial for the algorithm that the initialyepared staté#|+;)[0*"+1) is an
eigenstate of the projectiafy. This is indeed the case, even if we take into account theufiticins in the
guantum phase estimation step discussed in the next settt@arror that is generated by the fluctuations
of the pointer variable can be accounted for if we verify thaaity of the energy irP only up to7 < r
bits of precision. This allows to enlarge the eigenspacP @fith approximate energy;, encompassing
the fluctuations of the pointer variable.

Here we will calculate the expected running time. The prdhglof failure to reject the move, given
that we start in some staté;) in the energyE; subspace, aftetr > 2 steps, is given by the probability of
measuring?, aftern subsequent binary measurements. Note that the commFadr Py, Py Qs Po] =0
for all s, s’. Therefore, see Fifl 3, the probability of failure can be ggs the form

plm) =" ( :“L ) i {(PoQoPo)n_m (PoQ1Po)™ PoQoE (4)

m=0

(i) (vl @ |02 1) (0P FH]) EQoPy (PoQ1Po)™ (PoQoPo)" ™™

The full expression can conveniently be summed up to a steghe:

n

1
PO(Z QsPoQs) Po| PoQoEy;)|0* ) 5)

s=0

Pl (n) = (il (0> 1 EQo Py

We now make use of the Lemn{a{73) as stated in selion 7 andelmbasis in which the projectafs
andQ); are block diagonal. Note that we reuse the same two poinjestegs at each phase estimation step
in the algorithm. This means that even though a realisticplstimation procedure does not necessarily
act as a projective measurement on the physical subsysterbjriary measurements and(@); are still
projectors on the full circuit. Therefore Lemn{a{73) carl &t& employed, even for a realistic phase
estimation procedure. Without loss of generality, we agstirat the rank ofank(P;) = p is smaller than
the rank of@Q); which is equal to half the dimension of the complete Hilbpee (note thaP; projects on

a single energy subspace). Assume that the unifargrings P and( to this desired form. This allows us
to rewrite [B) ap! " (n) = (4; (0> T EU I D 05 (n)U; EJ1p;)]0?"+1) with

%

D(I - D)(D?+ (I— D)2  —/DA-D)D?+(I—D)*)" 0 0

| —/DA=DY(D?+(1- D) D2(D? + (I — D)2)" 0 0
Dyau(n) = 0 0 1 0
0 0 0 1



Here,D denotes a@-dimensional diagonal matrix with only positive entriesthl that the state
U E|y;)]0%"T1) has complete support on the projection oper&torThat is, as we stated earlier, the state
is an eigenstate df;. this means that it only acts on the first upper left block. éfdenote by < d* <1
the diagonal entry oD that gives rise to the largest entry in the upper left blocthefmatrixDsy (1), we
can bound

p™(n) < d*(1—d*)(d™* + (1 —d*)*)". 6)

We observe, that the probability of failure decays expoaéntin n, for a n-independentl*. Let us
maximize this expression over all possible valued™gfin order to obtain an absolute upper bound to the
failure probability. Definingr = d** + (1 — d*)?> = 1 — 2d*(1 — d*), we see that this probability may be

bounded by*z". This expression is maximized by choosing- ..}, for which we have

1 1 \" 1
prail(n) < 2(n+1) (1—}—%) ~ 2e(n+1) (7)

Hence, choosing = O(1/¢) recursion steps is sufficient to reduce the probability déifa to belowe.
We have to choose thisin such a mannar, that the probability of failure during a ptete cycle of the
Metropolis algorithm is bounded by a small constant number.

3.2 Running time of the quantum Metropolis algorithm

Let us discuss the runtime scaling of the full Metropolisoaithm. In general, there are three types of error
one has to deal with when we consider the the runtime scafittgealgorithm.

First, we are dealing with a Markov chain and hence there iassociated mixing errai**. The
mixing error of the Markov chain is defined with respect ta&@orm distance, &= [pg] — o*||1 <
€miz- HErem,,;, denotes the mixing time, i.e. the number of times the coraplgiositive map has to
be applied starting from an initial stagg to bee,,;, close to the steady state of the Markov chain.
The mixing time is determined by the the gApbetween the two largest eigenvalues in magnitude of the
corresponding completely positive map. The trace normis\ded by/([34]

IE™[p] = 0" ll1 < Coxp (1 = A)™, (8)

for a map that obeys quantum detailed balance, wiggg is some constant that typically scales exponen-
tially in the system size. The runtime, or the mixing timeglss therefore as

0 (07 ©

Just as for classical stochastic maps one needs to provéhthghp is bounded by a polynomial in the
system size for each problem instance individually to emthat the chain is rapidly mixing. It is generally
believed, that to prove rapid mixing for a realistic Hamilian is hard. However, the convergence rate
of the classical Metropolis algorithm is in practice favable if the physical system thermalizes; this is
because the Metropolis steps can mimic the actual phy$ieattalization procedure, albeit with the added
flexibility of unphysical moves that make thermalizationers of magnitude faster. It is expected that the
same will be true for the quantum Metropolis algorithm aslwel

The second type of imperfection relates to the fact, thatefect part of a local move cannot be imple-
mented deterministically. However, we already showed3d, that this probability can be made arbitrary
small by increasing the number of iterations in the rejecvend~or all realistic applications one would
choose a fixed* so that one only attempts to perform< n* reject moves before discarding the sample.
We want to achieve an overall success probability of pregaai valid sample that is bounded by some
constant. What do we mean by that? As already stated the Metropoleitthgn allows one to sample
from the eigenstates);) with a given probabilityp; ~ exp (—FE;). Since our reject procedure can only
be implemented probabilistically we have to choose a fixemler of timesn* we try to reject a pro-
posed update. The probability of failupg; (n) of rejecting a proposed update aftesteps is bounded by



prail(n) < m see[(¥). For the algorithm to work, we want the algorithm todpice a sample after
mmq. applications of the mag with a probability that is larger than a constanHence the probability of
failure afterm,,,;, steps should obejl — pryi(n*))™mi= > ¢. This condition is met if we choose

* Mmix

n >26(1—c) (20)
This means, that we have to implement for each Metropolis atemostn* measurement®; and @,
before we discard the sample and start over again. Note lifgtst a very loose upper bound for the
actual number of reject attempts, since the probabilityadtife actually decays actually exponentially in
n, however, with some unknown constant that is ensured to bdiemthan unity.
The third error relates to the fact that we are implementiegtigorithm on a quantum computer with finite
resources, e.g. a finite register to store the energy eigewim the phase estimation procedure. This leads
to a modification of the completely positive m&pwhose fixed poing* now deviates from the Gibbs state
pc by |lo* — pall1 < €*. This error will be discussed in sectibh 4.

4 Fixed point of the algorithm and influence of imperfections

In the previous descriptions of the algorithm we only coasidl the idealized case when we are able to
identify each eigenstate by its energy label. When thiséscidise, the algorithm can be interpreted as a
classical Metropolis random walk where the configuratioithe system are replaced by the eigenstates
of a quantum Hamiltonian. However, this picture falls shionte consider the more realistic scenario of a
Hamiltonian with degenerate energy subspaces. The mjegtbcedure ensures in this case only that we
end up in the same energy subspace we started from. We theenefed to investigate the fixed point of the
actual completely positive map that is generated by thaiitiréVe will see that the quantum Metropolis
algorithm yields the exact Gibbs state as its fixed poinhéfquantum phase estimation algorithm resolves
the energies of all eigenstates exactly. This is obviousigdssible for non integer eigenvalues as one
would need infinitely many bits just to write down the enesgie binary arithmetic. However, we will
show that this is not a real problem. A polynomial resolutidhyield samples that approximate the Gibbs
state very well, if the Markov chain converges sufficientigtt For the error analysis we will assume that
the ergodicity condition is met, and that the problem Hamnihin we are trying simulate is such that the
Markov chain is rapidly mixing. To be precise, for the erroalysis we assume that the Markov chain
is trace-norm contracting, see section 4.3. We previousigudsed the errors that arise due to the finite
runtime of the algorithm in sectidn 3.2 and the error due &dideterministic rejection scheme, cf. section
[B. In this section we consider the error that is relateti¢drmplementation of the algorithm. Due to the
implementation on a quantum computer three types of eriee.ar

1. Simulation errors. The quantum phase estimation algorithm requires impleimgitite dynamics
U = e~ generated by the system’s Hamiltonian for various timé&ghis can only be done within
a finite accuracy.

2. Round-off errors. The quantum phase estimation algorithm represents thersigstnergy in binary
arithmetic withr bits. This unavoidably implies that the energy is roundddaf bits of accuracy.

3. Phase estimation fluctuations.As seen in Eq.[(41), given an energy eigenstate of the syshem,
guantum phase estimation procedure outputs a randbihestimate of the corresponding energy.
The output distribution is highly peaked around the truergyebut fluctuations are important and
cannot be ignored.

The first error is related to the fact thatp(it H ) has to be approximated by a Trotter-Suzuki unitary.
This error can be ignored as long as the necessary efforéisithulation timel'y to make this small,
scales better than any powerlgfe ; with ¢ being this simulation error [19]. This first source of erranc
be suppressed at polynomial cost. Another way to tacklestinig is to adopt the analysis donelin|[28].
The second type of error is not a problem on its own. Suppa@etth eigenvalue df is replaced by
its closest-bit approximation. The corresponding thermal state waliffdr from the exact one by factors



of exp(27"). By choosing > log 3, this error can be made arbitrarily small. Note that the &ation
cost grows exponentially with, which implies that our Metropolis algorithm has complgiiicreasing
linearly with 5.

Interestingly, such a problem is already present in thesedabMetropolis algorithni [32], as one imple-
ments the Markov chain on a computer with a floating pointre#e a stochastic matrix is non-Hermitean,
a tiny perturbation of the stochastic map (by introducingtitog point arithmetic) could in principle change
the eigenvectors drastically. However, nobody ever seerhave encountered such a problem; this might
originate from the fact that the detailed balance cond#iosures that the stochastic matrix is well behaved.

The third type of error is more delicate and is intimatehatetl to the second type. Indeed, it is not
correct to suppose, as we did in the previous paragraplgtiaatum phase estimation outputs the closest
bit approximation to the energy of the eigenstate. Ratheytputs a random energy distributed according
to Eq. [71), sharply peaked around the exact energy. Thishdison can be sharpened by employing a
method developed in [33]: the idea is to adjgiR- 1 separate pointers, each comprisingubits, and to
perform quantum phase estimatigrimes on the system using each of the firgiointer systems in turn
for the readout. Then theedian of the results in the pointers is computed in a coherent way and written
into the(n + 1)th pointer. The probability that the median value deviatemfthe true energy by more than
27" is less thar2 =" [33]. Given an eigenstate df, this leaves two possible phase estimation outcomes,
corresponding to the-bit energy values directly below and directly above the energy. Hence, the high
confidence phase estimation algorithm acts as

[9i)]0) = i) (eu([Ei]) [LEi]) + ci([Ei]) [[Ei]) ) + O(e™™) (11)

where|a; (| E;])|* + |ai([E;])|> = 1 and | E;| and [E;] are the two closest-bit approximations to
E;. Despite this improvement, it is not possible to make theauk of the quantum phase estimation
procedure deterministic. In the worst case where the exaatgy for a given eigenstate falls exactly
between twa-bit values, the two measurements outcomes will be equiéifyl Thus, what we described

in the main text as projectors onto energy bins are not traly Meumann projective measurements, but
rather correspond to generalized (positive operator datoeasure, POVM) measurements on the system.

Phase estimation unitary and POVM To understand this, let us start by writing out the full unjté of
the standard quantum phase estimation procedure as defisedtiori 5. The unitary acts on thequbit
register that stores the state of the simulated system aindla s-qubit ancilla register that is used to read
out the phase information. We write

2" 1271 2V
o= > M!®|z)(yl, where MY=>"f(E;z—y)w;) ;. (12)
y=0 =0 j=1

Note that the function

. Ejt ) Ejt
1 em‘r(mfﬁfy) Sin (ﬂ'(I — ﬁ — 1 ))

27 i =55 -w) | sin (L(x ~ Lt y))

f(Ejz—y) (13)

is complex valued. The operatai$?=" constitute the POVM generated on the system state by thephas
estimation procedure. The lahelof the POVM denotes the-bit approximation to the energy generated
by the phase estimation procedure, whergasrresponds to the initial value of the ancilla registere Th
map® is therefore the full unitary of the phase estimation praredDue to[(IB) it becomes clear that the
estimater of the eigenvalue®; gets shifted by an amount gf if the ancilla register is not initialized to

y = 0.

4.1 The completely positive map

We now investigate the actual completely positive map (gp)mgenerated by all unitaries and measure-
ments in more detail. The full map can be understood as aialinéttion step denoted by followed
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by successive®? and @ measurements, as discussed in sed¢flon 3 and illustrateig.if@F Note that the
projectorsy); depend on the random unitat}. For each application of the map we draw a random unitary
C from the seC = {C'} according to the probability measuig(C). We therefore have to average over
the setC. The cp-map on the system is obtained by tracing out all Enebisters. As shown in the pre-
vious sectioli 3, the error obtained by cutting the numbetenétions in the reject case 6 can be made
arbitrarily small; we can therefore approximate the fullp@s an infinite sum

Elp] /cTrA [LQlE (p ® |02r+1><02r+1|) EQle (14)

+ Tra [PIQoE (p® |02 10 +1|) EQoP1]

1
+ Y. Y TralPQs P PoQs, PoQoE

n=1s1...s,=0

(p® |02 1Y (0> ) EQoPoQs, Py - .. PoQs, P1] du(C).

The projective measuremen®s and(@ are comprised of several individual operations. We adopve n
notation: an unmarked sum over the indices written as snalhlletters, e.gk%1, p1, ... is taken to run
over all2” integer values of the phase estimation ancilla registes. prbjectors can be written as

Qe= > > CTMPTMPC ® k) (hr| © 1) (pa] @ B (ka, ka), (15)
k1,k2 p1,p2
Po= 3 3" MPTIMP @ ki) (k| © [pa){(pa] ©1L,
k1#k2 p1,p2
=3 > MPTME © k) (k1| © [py) (pe] © L.
k1=k2 p1,p2

As before, we used the convention that the first registeraiosithe physical state of the system. The
second register of-qubits corresponds to the register that stores the eigeneatimates of the first phase
estimation, the third register is again used for phase asittmand the last register sets the single condition
bit. The last matrix is defined as

R (ky, ko) = Wk, ko) |s) (s|W (k1, ko), (16)

with W defined in[(B). Furthermore, the first operation in the cirdhiat prepares an eigenstate and copies
its energy eigenvalue to the lowest register, is denoted by

E=Y" %" MPETMPE @ |k @ ko) (| @ |p1)(po| ®1, (17)
k1,k2 p1,p2

whered, denotes an addition modu®s. For notational purposes we introduced another operation

=3 METMEC® (k) (k| © |pa) (pa] @ W (K, ka). (18)
k1,k2 p1,p2

A successful measurement@f at the beginning of the circuit, Fid.] 2, followed by the ofema L corre-
sponds to an acception of the Metropolis update and a fuctean-up operation that becomes necessary,
when considering a realistic phase estimation procedure.

If we define new super-operatordp] and B, ({s.})[p], the cp-map on the physical system can be
written as

Elp] = Alp] + Bolp +Z Z Br.({sn})[p]- (19)

n=1s1...5,=0



Here A denotes the contribution to the cp-map that correspondbkedrstance, where the suggested
Metropolis move is accepted. Each of thg correspond to a rejection of the update aftet 1 sub-
sequent) and P measurements. These superoperators can be expressddws:fol

A= Y0 S [ €y min (1,6 G0 gt Taapenapy g, o agg, gt

k1,k2 d,p1,q1
(20)
Furthermore,
Bl = Y3 3 [ du(€) QIR )R, 1)) (21)
ki i dipy,p2ian,ge Y ©
VAV TelbViekh Victed Vi ViR VD Vi teld VEIA VECTehY bVl
and
B,({sn})lp] = Z Z /d,u(C) I ({sn}, {lns1}, {rn41}) (22)
ki d{lnga}i{rni} 7€
i
Di, ({ln41}) p D, ({rn41}) -
The operator® and the scalar functiogin the definition ofB({s,,})™ are given by
gk ({s}s b}, {rnga}) = (OIR(ka, 1) R* (K1, 72) - R*™ (K, ) (23)
R (k1,lpy1) ... R% (ky1,l2) RO (K1, 11)]0)
and
11 rpan N e — .
Df ()= Y. > M Moty TP Cmpe s T vpeeCt (24)

{an+1}7£k31 {pZn}
a ai C 5 11 C k1 ki*

This concludes the description of the completely positig@morresponding to one iteration of the Metropo-
lis algorithm.

4.2 Fixed point of the ideal chain

To be able to make statements about the fixed point of thistgomaMarkov chain, we introduce (see
sectior 6) a quantum generalization of the detailed balaoneept. As for classical Markov chains, this
criterion only ensures that the state with respect to whighchain is detailed balanced is a fixed point.
However, it does not ensure that this fixed point is uniquee Thiqueness follows from the ergodicity of
the Markov chain[[35, 36] and thus depends in our case on thieebf update$C'}, which can be chosen
depending on the problem Hamiltonian. A sufficient (but retessary) condition for ergodicity can easily
be obtained by enforcingC'} to form a universal gate set, as will be shown below.

In sectior® it is shown that a quantum Markov chain obeys tymmletailed balance, if there exists a
probability distribution{p; } and a complete set of orthonormal vectéys;)} for which

VPnpm (il El|n) (Ym][905) = /PiDs (m|E|15) (bill[on).- (25)

This condition together with the ergodicity of the updafés} ensures that the unique fixed point of the
guantum Markov chain is

2N
o= pilti)(¥l- (26)
=1
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We therefore would like to verify whether conditidn{25) &tisfied when we choose the equal to
the Boltzmann weights off and the vectors equal to the eigenvectars.

The condition[(2b) is linear in the superoperators. We canetiore conclude that, when each of the
summands4 and all theB’s in (19) individually satisfy this condition, the total epap £ is detailed
balanced.

The idealized case would be met if we could simulate a HamidtoH with eigenvalueds; that are
r-bit integer multiples 0%, or if we had an infinitely large ancilla register for the paastimation. In
this case, the operatofd, would reduce to simple projectofz ., on the energy subspace labeled by
E + p. Hence

M}%TM% = 0p.gllEyp-
Note that they, , ensures that after ea¢hand() measurement the second ancilla register used for phase
estimation is again completely disentangled and returits tiriginal value.

Furthermore, in the special case when the eigenvalues ¢iah@ltonian are non-degenerate the pro-
jectors reduce tdlg, = |v;)(w;|. In this case it can be seen that the dynamics of the algoniétuce
to the standard classical Metropolis algorithm that is dbed by a classical stochastic matrix that can be
computed as

Sij = (U31€ [[9a) (il Ih5)-

For this special case it is obvious that the detailed balanodition is met.

Let us now turn to the more generic case, when the energy\siiers are degenerate. We investigate
each of the contributions to the completely positive niag).(19

The accept instance: We first investigate the accept instance described by theatipel[p].

A= % /C dp(C) min (1,e—B<E2—E1>) p,C g, pllp, CHlg,. 27)
F,,E
The detailed balance criteriodn {25) for = +e~°%i and|y;) reads
1 g1k 1 _
7€ PETE | Al (o) = e ETED 2 (5 Al ) ([ (28)

Note that the chain of operators begins with a projetigr and ends with a projectdig,. The detailed
balance condition reads therefore

1 E . _B(E,—E;

A / du(C) min (1, E) b5, 1, 8, i, (G|l ) (O |om)  (29)
C

_ 2

- Z

e—,@(Ez-ﬁ-Em)/?/dlu(C) min (1’6_:8(Ej_Em)) 5E“Em5Ei7Ej <¢j|C|wm)<¢z|CT|¢i>-
c

Due to the fact thag e~ #Z min (1, e A(Fi=E1)) = Le=FEimin (1, e~ #F1=E0)), this reduces to

/C A(C) (r |l 4y |C o) = /C Ap(C) (W ]C b (| CT185), (30)

where the energies of the eigenstates have to sdiisty £, andE; = E;.

One sees that (27) is satisfied when the probability meashagso
dp(C) = du(CT). (31)

If we consider an implementation that only makes use of alsiogitary C for every update, we have
to ensure that this unitary is Hermitian, i.€. = C*. This symmetry constraint on the measure can be
seen as the quantum analogue of the fact, that we need toech@ysnmetric update rule for the classical
Metropolis scheme.
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The reject instance: We now turn to the reject case described by the operdiigs.})[p] . The
rejecting operators also simplify greatly when we consitlercase of perfect phase estimation. After each

phase estimation step the second register disentanglés the,, ,, . ,, we get

BallsuDdl =3 S g5 (sn}{lwss} {rasa}) /C 4p(C) DY ({lus1}) pDY' ({ruin})- (32)

E {l71+1}§{r71+1}

The chain of unitaries and measurement operators in thetwpé? (24) reduces to

DY ({lyy1}) =OpCHIL,  CTIECT .. . TIHCHIL, Clg, (33)

n+1

wherell is the projector on to the orthogonal complement of energpgisacer. Note that the first and
the last projector in each chain of operatorElis. Hence, all elements

(1| Bn ({sn })[93) (15])|10m)

vanish, if all energies are not equsl = E; = E; = E,,,. We can therefore disregard the probabilities
on either side of the detailed balance equafioh (25). Thailddtbalance condition thus reads

(1| Bn({sn D[40 (5 [[m) = (5| Br({sn })[¢m) (¢ulllhi)- (34)

It is important that the functiong ({sn}, {ln+1}, {rns1}) @3) is real. Due to this fact and furthermore,
since all the individual operato®®(E, k) are Hermitian, we may exchange the ordering of the indices
{ln+1},{rns+1}- Thatis, we may write

gr ({sn} {lnt1} Arns1}) = 98 {sn}s {lntr }s {raa D) (35)
= <O|R0(k}1, ll)TRsl (kl, ZQ)T ...R%" (kl, ln+1)TRS" (kl, Tn+1)T ...R% (kl, TQ)TRO(kl, Tl)T|O>

= g ({sa}; {rnerh {lnta})

Furthermore, since the individual projectdfs andIl4 are of course Hermitian, we may write

(1| Bn ({50 }) [¥i) (¥5]19m) (36)
= > e ({sn},{ln+1},{rn+1})/cdu(0) 851,515,511 DY, (a1 }) 193 (051 D%, " ({rns1}) [9om)

{ln+1}s{rnta}

= > 9 ({Sn},{Tn+1},{ln+1})/cdu(0) 8,0,y B (051 D%, ({1 }) [0m) (00| D, ({n1}) [94)

{ln+1}bs{rna}

= (j|Bn({sn})[¥m) (¥u][¥i)-

The last equality in[(36) is precisely due to the fact that e eorder the indices as previously discussed
and that we are dealing with projectors on the energy sulespac

As already said, a possible set of updates that will ensyedécity in general is given by choosing
{C} equal to a universal gate set. So for instance the set of afliple single qubit unitaries augmented
with the CNOT gate would suffice to ensure ergodicity for apiteary Hamiltonian. To show this, we
make use of a result proved in |36], Proposition 3. For cotepless, we just repeat the part of the proof
that is relevant to us.

Primitive maps A completely positive mag is called primitive if for all stateg there exists a natural
numberm so that,
EMp] > 0. (37)

This means tha£™[p] has to be full rank for some:. All primitive maps are strongly irreducible,i.e.
ergodic. That s, i€ is primitive the map has a unique eigenval(€) with magnitudg\(£)| = 1 and a
unique fixed point™* > 0 of full rank.
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Proof: By contradiction: Assume thdtis primitive but not ergodic. This means that one of the follo
ing holds: (a)o* is not full rank; (b) There is anothér* that corresponds ta = 1, i.e. the eigenvalue
is degenerate; or (c) there exists another eigenvalue |With= 1. If (a) holds the channel can not be
primitive, since for alln we have€™[0*] = o* which is not full rank. Now, if (b) we will be able to define
ane = [Apmas((0*)71/26%(0*)~1/2)]7! so thato* — e5* > 0 is not full rank and we are back in case (a).
Furthermore, if (a) and (b) do not hold but (c), the only otligienvalues of magnitudecan only be &

-th root of unity for some finite natural numbgr This implies, however, that assumtion (b) holds for the
p-th power€?, and thus (a) follows.

With this Lemma at hand, it is straight forward to proof theéqueness of the fixed point. All we need
show is that the cp-mag is primitive.

Uniqueness of the Fixed point If we choose the set of all possible upda§€s equal to a set of universal
gates, then the Metropolis Markov chain is ergodic for altéig < oo.

Proof: If £ denotes the map defined in{19), accordindtd (37) all we neeathow is that there is an
m such that for everyy) and everyp (y|E™[p][yy) > 0. Sincep can always be written as a convex
combination of rank 1 projectors it suffices to chogse- |p){(¢|. Furthermore we observe that &,
defined in[[IP) are positive, i.e.

(¥[Bn({si})[pllv) = 0, (38)
since this expression can always be written as the tracetloeg@roduct of positive semi-definite operators
for any p and|v)), see[(I#). We can therefore disregard the contributioms fhe B,, and focus only on
the accept instancé of the map€, since by virtue of[(38) we have

@IE™ o) (elllv) = (WIA™[le)(el]I¥). (39)

We can thus write

WA [lo)(ellly) = (40)

/du(C’l)...du(Cm) > Hmm(Le*ﬁ(Em*Eﬂ)\<¢|HEm+lcm...clnEl|<p>|2

Ei...Bmy1 i=1

> e ABmac—Emin) / dp(Ch) ... dpu(C)Fy.5(Ch,...Crn).

Here E,,.. and E,,;,, denote the largest and the smallest eigenvalues of thegmoblamiltonianH
respectively, and we defined the integrahas

2
Fyo(Cr...Cn)= > |[(W[Mg,,,Cn...Cillg,|p)|". (41)
Ei..Emia

Note that the prefactos—#(Fmae=—FEmin) does not vanish for all finitgg. Since the integrank is non-
negative, we only need to proove thiatdoes not vanish. Since we are drawing e . . C,,, from a set
of universal gates we can always find a finite by virtue of the Solovay — Kitaev theorem [37], so that
there exists a sequence of gafesthat ensures that there is a sufficiency large overlap betygeand
Cp ... C1|Y). Thatis for a givery,,, there exists a sequencermfgates, so that

2

[(@|Cm .. CLl@)* = | > (@Wlg,,,Cm...Cillg,|0)| =1 em, (42)
Ei1...Emy1

where we inserted resolutions of the idenfity;, I1x,. Hence, at least one of summandsin (42) has to be
non-zero and thusy, , is strictly positive and does not vanish. Therefore, theiste an integem so that

the integral in the last line of (40} is strictly positive n8e [40) acts as a lower bound(to|E™ [|¢) {¢|]|%)

we can conclude that is primitive.
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4.3 Error bounds and realistic phase estimation

Let us next return to a more general Hamiltonian that has lestiesspectrum. As was discussed earlier,
a realistic phase estimation procedure introduces erairsmly due to the rounding of the energy values,
but more importantly due to the fluctuations of the pointaialdle. For a completely positive map with
realistic phase estimation the detailed balance cond{@Bhwill not be met exactly, but we can show that
the condition is satisfied approximately. This will be suéfitt for our purposes.

In order to bound this error we adopt a standard proceduoeualsd for classical Markov chains [38].
Throughout this analysis we assume that the completeltiposnap is well behaved and is contract-
ing. Whether this assumption is satisfied depends on thenmixioperties of the problem we consider
and on the choice of updates. Therefore, these propertiesthde verified for every problem instance
individually. A quantum Markov chain is trace - norm contiag if it satisfies

1€lp = olllr < mllp— ol (43)

where the constant; < 1 is the smallest constant, so that this inequality halds.[38]e constant; is
often referred to as the ergodicity coefficient. Note thatmiap is considered contracting only when the
constant is strictly smaller than unity. It can occur, fomsopathologically behaved maps, that this constant
is not strictly smaller than unity even though the map isabpmixing. However, this can be cured by
blocking several applications of the channel togethediteato a new constant smaller than unity|[39].

Error bound The errore* between the exact fixed poiat® of the map& and the Gibbs stateg =
% exp (—BH) can be bounded by

59

lo* = pall < (44)

L—m
Heren; < 1is the ergodicity coefficient of ande®? the error that arises due to a single application of the
map onpg, i.e.[|€[pc] — pallt < €.

Proof: The errore* can be written as

* . m _ < . & ekt
lo* —pall = Jim 1€ [pc] pG|\1_w}1_>mOOI;||5 lpc] =€ pallh (45)
im gm - _ 1€]pc] — pelly
< 1r}1—>oo = nlf 1”5[/)6'] PG||1 = ﬁ

Thus we only need to bound the error that occurs when we applyniape to the Gibbs states once.

In order to bound this error, we will make use of the fact ttegt tompletely positive map satisfies the
detailed balance conditioh (25) at least approximatelyt Usediscuss what it means to satisfy detailed
balance approximately.

Approximate detailed balance Suppose we are given a completely positive riggnd an orthonormal
basis{|¢;)}. To each state we assign a Boltzmann weight of the fopm= Le =7}, If this cp-map
does not precisely satisfy detailed balance, but only ancqipate form such as

VPnPm (WilEl[n ) (Y] |v5) = V/Pips WmEl[Y5) (Willlon) (1 + O()) (46)

we can give the following bound on the error, measured in theet- norm, that occurs upon a single
application of the completely positive map.

1€lpa] = pall < O(e) (47)
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Proof: Letus defing = 3", p;|¢;)(¢;]. Then due to[(46) we have

(Wil€lp6]dm) sz (il & i) (Willlom) = (48)
B (1 4+ () T €]} (] = prm (14 O(E)) .

So the application of yieldsE[ps] = p. Note that the statgy is still diagonal in the same basis as
and both of the probabilitie of o relate to the original probabilities via = p; (1 + O(e9)). Sincepg
andp¢ are both diagonal in the same basis, it is straightforwambtopute that oo — pall1 < O(e%9).

Let us now verify the approximate detailed balance conuliff8) of the completely positive majp {19)
for a realistic spectrum of the Hamiltonigh. First let us consider the standard phase estimation puoeed
Since the actual eigenvalues may have arbitrary real valieemay not assume that the individud} act
as projectors on the system. Note that even the combinatiM,f&M,j is not Hermitian anymore when
p # q. Thisis precisely due to the fact that the functi(E;, k — p) (L3) is complex valued. An additional
phase is imprinted on the system state. At first sight thisxsde hinder any form of detailed balance in the
eigenbasis of the Hamiltonian. It turns out, however, thattbtal expression on either side of the detailed
balance equation is still real. Note tHHt,fTM,‘j is diagonal in the eigenbasis &f and assumes the form

2N
M,fTM,j:Zf(Eij—p)*f(Ejvk—Q)Wj)(lM- (49)
=1

m(p—q)

Hence, the phases ifi(E;,k — p)* f(E;,k — q) cancel up to a total phase factéjm, which is
independent of both and E;. This allows us to write

eim(p—q)

MPIMI = 5P, (50)

7 (p—q)

where novamT SP?. Let us have look at a segment of the chain of operators asypally appear in
the superoperatom or B ([I9). The typical sequences look like

]\/[PSTMpz C MPzT]\/[;Dl eiﬂ-(ps —p1) P3p2 P2P1

MM o M — "‘W‘g’w C St ... (51)
This leads us to the conclusion that in each of the operatpresees the phases that arise due do to imper-
fect phase procedure cancel. The first phase associapgdg0 due to the initialization, whereas the last
phase associated withis canceled due to the measurement. This gives an addiggpkination of why it

is necessary to reuse the same pointer register for the petis&tion procedure each time. However, this
comes at a cost as the realistic phase estimation procedese’tinaturally disentangle the pointer register
used for the next phase estimation anymore. Hence, thalisiéite of the ancilla register for the next phase
estimation step may be altered. So after subsequent measnteusing the same register the distribution
function of the pointer variable spreads.

We now consider what happens in the case where we use the tiididence phase estimation based
on themedian - method[[33]. As already stated, this method allows us téoperphase estimation where
the pointer variable fluctuates at most in the orde2 df. All other fluctuations are suppressed by a factor
of 277 and will therefore be neglected in the following. According(11) we can replace the function
J(Ej, k — p) by its enhanced counterpark, (k — p), which acts as a binary amplitude for the two closest
r-bit integers to the actual enerd@y . As discussed earlier, the phases that arise due to thefecpphase
estimation algorithm cancel, if for each of thephase estimations the corresponding registers are reused.
We are therefore left again with operatd#$’ acting on the physical system that are diagonal and have
only real entries. We will thus regard the amplitudes (k — p) as real from now on. We will therefore
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write

2N
SP1 = "ap, (k- p)ag, (k- q)|v;)(w;]. (52)
Jj=1
Let us pause for a minute and have a closer look at the opsrfr As stated previously th?? are
diagonal in the Hamiltonians eigenbasis and have only rgales. Hence, these operators are Hermitian.
Furthermore, smcaQE acts as a binary probability distribution on the tve- 2~" closest integers tg—
we see that for a fler and a fixed;, the only possible two values férare

Eit Ejt
==& +q and kv = | =L +4q.
27 2T
2-r 2=r

Conversely, the operatdf;? has only support on the subspace spanned by the eigenvegtprshose
energies lie in the interval

e[k+q)—2"(k+q)+277|N[(k+p) -2 (k+p)+277].
This allows a further conclusion. For a fixédndq the operator does not vanish only if
pelg—27"q+27".

The interpretation is as follows: the operagf’ implements the action of a phase estimation and its con-
jugate on the system. If the ancilla register was initiatljthie statdq) the full phase estimation process
does not disentangle the ancilla register afterwords, ifexe performed in an intermediate operation. We
have seen previously in the analysis for the idealized pessmation procedure, see section 4.2, that the
inverse phase estimation procedure returns the ancillateedo its original valueq). Since the pointer
variable fluctuates now, this is not the case anymore anddheep register remains entangled with the
simulated system. However, since we perform an enhances@simation procedure, the allowed values
for the ancilla register are bounded py = g +2-"*1. Thus even thoughK%? is not a projector anymore,
the previously discussed conditions suffice to ensure ajopaie detailed balance.

Let us now verify the approximate detailed balance conalititw each of the summands [n{19).

The accept instance: We analyze what happens in the accept case indicated by #ratopA|[p]. Due
to the cancellation of the spurious phages (51) this opehat®the form

Z Z /du Inln 1 e~ tﬂ(]”*kl)) SZSIC’ Sg;OpSQfICTSZ;d. (53)

k1,k2 d,p1,q1
We now want to verify whether the approximate detailed bedazondition is met, when we choose again

P = —oE and|y;) as the eigenstate ¢f. We choose a symmetric measure, ig(C") = du(C), and
verlfy the approximate detailed balance conditiof (46)e it side of the equation reads
OUEEED2 (| Al (s ]| ) (54)
= Y Y penEemn / ap(C) min (1,677 2700 ) (0| SEC SR (0100 CSE o)
k1,k2 d,P17q1
= Y Y petEanr / ap(C) min (1,67 0280 ) (0| Cli) 15 C )
k1,k2 d,p1,q1

ag, (k2 — d)ag, (k2 — p1)ag, (ki — p1)ag, (k)ag, (k2 — d)ag,, (k2 — q1)ag, (kr — q1)ag, (k).

We are free to relabel all the summation indiégsks, d, . . . to match it with the other side of the equation.
The sequence
=q¢;+d

o D1

}—>k1:k’2+d—>d:2r—d’ (55)
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does exactly this. Note that sinag;, (k +2") = ag, (k) the constan?” in the last step can be dropped. If
we now consider the worst case scenario of the fluctuationsg;aft1 ), we see thak; deviates at most as
much ask; ~ % + 277+ The same is also true fés andk, k| respectively. Hence we can conclude

le_ﬂEi min (17 e(_BzTW(kD—kl))) — le—,@Ez min (17 e(—BZT”(kll—ké))) 14+ (’)(ﬁ4_7r2—r) ) (56)
Z Z t
We can therefore establish, that

2 BB | A o) = eI 2 Al llgn) (14 O(€)  (57)

with e = [347”2*’“ which can be fully controlled by adjusting the relevant fpagameters.

The reject instance We now turn to the reject case. The operators change acgbydie consider
the detailed balance condition for each of the ®)|({s,})[p]. Note that due to the previously discussed
phase cancellations the operatﬁ}%1 ({ln+1}) as defined in[(24) assume the form

D ({lnpn}) = Y. Y Siprctsprrem sy vl ghs ot osi®. (58)
{an+1}#k1 {p2n}
The analysis of the reject case is very similar to the exas.cd/e make use of the fact that all the functions

ks ({sn}, {lnt1}, {rns+1}) andag, (k — p) are real, and that we can relabel the indices like we did in the
exact analysis. We have to establish that

e EAE 2 B (s })5) (5 ) (59)
= e PERED (g B ({5} [m) W]l (14 O)

up to some, that will turn out to be: = n%’fm‘r. We again start by considering the left side[of](59) and
show that it will be equal to the right side up the specified

2 B EAED 2 B ({5 })[5) (] o) (60)
= X X Ul ) [du(©) et

ki di{lnt1}s{rns1}
(W31 DI () 1w (@ DY, (g1 }) [002)-

We will first exchange the index sefs,, 1 } and{i,,+1}. This is possible since the functigp, is real and

we follow the same analysis we already performed in the cheeddealized phase estimation. Now we
turn to the sequence of the relabeling of the indexdsét, I1,r1, a1, b1, - ... Note thata; andb; are part

of the definition ofD{ ({l,,+1}) andDglT ({rn+11}) respectively[(58). The relabeling sequence that does
what we want reads

ki =k +d— (61)
Pon = @5, +d lny1 =141 +d P2n—1 = qy, 1 +d
— - -
{ Qan = Py, +d Tl =Ty +d G2n—1 = Po,_1 +d
{bn+1_aﬁl+1+d — ... = 4 d — o= +d —d=2"-d".

For these replacements to work, it is important to note thebperator®®(k,, ;) depend only on the dif-
ferences, i.eR*(k;—[;). The sequence of replacements therefore leaves the fagetio{ s, }, {ln+1}, {rnt1})
unchanged. However, since we do perfdmphase estimation processes for each of the superoperators
B, ({sn}), the variablék; in the last process may fluctuate in the orden®f” 1, as was discussed earlier,
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and we may no longer assume that the statistical weightstbereiide of the equation are equal. Hence
we know that for the worst instandg is § = £n2~""! close to either energ¥; , E; , E; , E,,,. We can
therefore see, upon evaluatingl(59), that the detailechbaleondition for each individud?,, is met up to
ane = nirp2-r.

We observe that the increases linearly in the numberof subsequenP and @ measurements we
make to reject the proposed update. For all realistic apidins, as discussed in sect[on]3.2, one would
choose a fixedh* so that one only would attempt to perform< n* reject moves before discarding the
sample. Since we want to achieve an overall success prabaiiipreparing a valid sample that is lower
bounded by a constant we have to choose* > % Herem denotes the number of times we have
to apply the majg to be sufficiently close to the desired steady-state. Thislated to the gap\ of the
mapé, cf. sectio 3.R2. Hence in the end we can give an error estifoat single application of the map,
which is of the order

sq m A .
69—0<m7[32 ) (62)

5 Implementation

In this section we describe how to efficiently implement thiamtum gates required by our algorithm on
a quantum computer. As is now standard in the literature,sgarae that we can implement single-qubit
operations, measurements of the observadtesand elementary two-qubit gates, such asaReT gate
with unit cost.

The first nontrivial operation required by our procedure im@ans to simulate the unitary dynamics
e~ generated by &-particle HamiltonianZ. We assume thatl can be written as the sum sfterms,
each of which is easy to simulate on a quantum computer. Theviey to do this follows the method
described by Berrgt. al. [19] and by Childs[[311]: this procedure provides a simulatid the dynamics
e~ H ysing a quantum circuit of lengfth, where

Ty = cs2toN (log, (N))29V1os(s*to/ex) (63)

andc is a constants denotes the number of summanddin0 < ¢t < tg, eg is the desired error, and
log, (N) is the function defined by

log, (N) = min{r | logs” (N)},

Whereloggr)(-) is therth iterated logarithm. Now, for a typical Hamiltonian enotered in condensed
matter physics or quantum chemistry, the number of termcales as a polynomial with, the number
of particles. Thus the lengthy of the circuit scales better than any powerlgty and is almost linear
with ¢, and scales slightly worse than a polynomialNn Thus we can simulate=*# for a length of time
t ~ p(N) and to precisiory ~ 1/q(N) with an effort scaling polynomially withiV, wherep andq are
polynomials.

The next operation required by our algorithm is a method tasuee the observablé. This can be
done by making use of the quantum phase estimdtion [17, 18thws a discretization of von Neumann’s
prescription to measure a Hermitian observable. Firstiadjoancilla — thgointer —which is a continuous
quantum variable initialized in the stal@), so that the system+pointer is initialized in the staig0),
where|y) is the initial state of the system. Then evolve accordinfpéortew Hamiltoniadk’ = H ® p for
a timet, so the evolution is given by

2N

e HED =N " [y (0| @ e P, (64)

j=1
Supposing thatp) is an eigenstatg);) of H we find that the system evolves to

efitH®i7|1/}j>|O> = |[¢;)|z = tE;). (65)
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A measurement of the position of the pointer with sufficighigh accuracy will provide an approximation
to Ej .

To carry out the above operation efficiently on a quantum agsmpwe discretize the pointer usimg
qubits, replacing the continuous quantum variable witfi-@limensional space, where the computational
basis statek) of the pointer represent the basisradmentum eigenstates of the original continuous quan-
tum variable. The label is the binary representation of the integétarough2” — 1. In this representation
the discretization of the momentum operator becomes

22’

With this normalizatiorp|z) = 5-|z). Now the discretized Hamiltoniah® = H ® p is a sum of terms
involving at mostk + 1 particles, if H is ak-particle system. Thus we can simulate the dynamick of
using the method described above.

In terms of the momentum eigenbasis the initial (discrefiztate of the pointer is written

]I—cr

(66)

2"—1

|z =0) W Z ) (67)

This state can be prepared efficiently on quantum computérdtynitializing the qubits of the pointer in
the statd0) - - - |0) and applying an (inverse) quantum Fourier transform. Tkerdtized evolution of the
system+pointer now can be written

2" -1

e ) = 0) = 2, e ), (68)

Performing an inverse quantum Fourier transform on thetpoleaves the system in the stafe) ® |¢),

where
27 -1 1 27 —1 m(m—@)z
6y =>_ <§ doer i >|a:>. (69)

z2=0
Thus we find that

271
= Z f(Ej,.%‘)|l‘>7 (70)
x=0
where ( ( Et))
| 2_isin2 T\ — 5=
BN e )] "

Which is strongly peaked near= LEﬂtJ To ensure that there are no overflow errors we need to choose

t< ”H” (We assume here, for simplicity, th&t > 0.)

Itis easy to see that actually performing the simulatiok'dbr ¢t = 1 using the method of[19] requires
a product ofr simulations of the evolution according ng ® L "’6 for 1,2,22,...,27~! units of time,
respectively.

We write @ for the unitary operation representing the complete quarnihase estimation procedure.
Using @ it is straightforward to describe a procedure to approxéaameasurement df: we adjoinr
ancilla qubits and appl and then measure the ancilla qubits in the computationadd bagproximately
projecting the system into an eigenstate) of energy, and resulting in a stringwhich is anr bit approx-
imation to the value®; /|| H||.

Finally, let us briefly discuss how to implement the unitagtegV (Ey, E;). This is a single qubit
unitary conditioned on two energy registers. That this dmhl unitary can be performed efficiently
follows by observing that one can efficiently compute thelafig= arcsm(eg( = ~Fi)) into a scratchpad
register, conditionally rotate the answer qubit by thislapgnd uncompute.
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6 Quantum detailed balance

In this section we discuss the implications of Quantum teddialance. We use detailed balance as a tool
to ensure, that the constructed quantum Markov chain hasdetbieed fixed point.

Definition: Quantum detailed balance Let £ denote a completely positive map, and éebe a den-
sity matrix, then thef is said to obey detailed balance with respecttd the induced mapé,[p] =
Elo'/?pat/?] is Hermitian with respect to the Hilbert-Schmidt scalardaret. That is, the map has to
satisfy Tr[p'E,[¢]] = Tr [€5[p]T¢] for all complex square matricgsandg.

If the completely positive map obeys detailed balance, weicanediately infer several properties.
First of all, since€ can be obtained froré, by a similarity transformatiorf, must have a spectrum that is
real. Furthermore is guaranteed to be a fixed point of the completely positivp:ma

Lemma: fixed point  Leto be a state anéi[p] = 3_ , AMpAL a completely positive map that satisfies the
definition for Quantum detailed balance with respect ttheno is the steady state @f.

Proof:  Consider the two maps;, [p] = 3, A,0'/?po!/? Al and&;[p] = 3, o1/? Al pA,0t/2. By
definition&, [p] = EX[p] for all p. Then

Elo] = &,]1) = &] 1/2ZATA ol

We will now derive a simple criterion to verify whether a givehannel is detailed balanced with respect
to a specific state. Suppose the basis in which the densityxnigtiagonal is known, then the detailed
balance condition can be checked in a straightforward ntanne

Lemma: Detailed balance criterion Let {|¢);)} be a complete basis of the physical Hilbert space and
let {p;} be a probability distribution on this basis. Furthermogsume that a completely positive map

g[p] = Zp, AHPAL Obeys
Vpnpm<wz|5[|wn><wm|]|w7> = \/PiDj <¢m|5[|¢g><¢z|]|¢n>, (72)
theno = . pi|vs) ;| and€ obey the detailed balance condition. Therefoie the fixed point of.

Proof: Let &, be defined with respect @ = >, p;|v;)(¢;|. We need to verify, whethef, becomes
Hermitian with respect to the Hilbert-Schmidt scalar pratd®ne immediately sees that

T (o' 001] = Y ByiSum /B (U5 €[ () 165)

ij;nm

> ByiSrm/ BB G € (i) (W51) 9o

ij;nm

Tr(Ex(p)"d].

7 Binary measurements and pairs of subspaces
The key technical reason why it is possible to implement #ject move in the quantum Metropolis algo-

rithm is related to a very special normal form in which two fir@ommuting) Hermitian projectors can be
brought.
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Lemma: Jordan 1875 Let P, and@; be two projectors of rar(k)1) = ¢ and rankP; ) = p on a Hilbert
spaceH = C™ with p + ¢ < n. We assume w.l.0.g., that> p. Then there exists a basisHfin which P,
and(@; can be written in the form

I Opn—
P = P TP ) (73)
Dy DP(HP - Dp) 0 0
0y = D, (L, — Dp) I, —D, 0 0
0 0 I,—p 0
0 0 0 On—(g+p).n—(a+p)

Here,D is ap x p diagonal matrix with real entrigd< d; < ... <d, < 1.

Proof: We can always choose a basist#in which the projectoP; can be written as

Pl = ( 0 ]Ip Onip’p > . (74)

p,n—p On—p,n—p

In any basis, a general ragkprojectorQ; can be written in the form

A i
0, = ( o ) ( Al B ) (75)
n—p,q

HereA,, andB,,_, , are rectangular matrices ov€r We require that); is a projectorQ? = @, leads
to the constraint

Al Apg+ Bl B pg =1, (76)
We can now choose to perform a singular value decompositioA,9 = UAEAVj and B,,_pq, =
UBZng. The projector can thus be written as

Us 0 YAl SaVIVEYs uloo
Q1= U t t t : (77)
0 Usp SpViVaSa  EpXb 0 UL

Note thatU4 andUp arep- and(n — p)-dimensional unitary matrices respectively. Therefdne, total
block diagonal unitary/4 & Ug leaves the projectaP; invariant. If we turn to equatioh (¥6), we see that
upon inserting the singular value decomposition, the mafri= V,ZVB must satisfy

224 =V (I, - 252V (78)

Note that botrEi‘EA andl, — ZEEB are diagonal matrices, which are accordindtd (78) simlfare

assume w.l.0.g., that the singular values are non-degenar@conclude thdt can only be a permutation

matrix. The degenerate case can be covered by a contingityremt. If we defind = EAEB and apply

the appropriate permutations to the remaining submatneesare left with the desired expression .
To make the binary measurements complete, we have to cHomsemplementary projectors &s =

I — P, andQo = I — @4, obviously, those complementary measurement projectrs b very similar

structure toP; and@);.

8 An experimental implementation
It is possible to implement the quantum Metropolis algaritiith todays technology for a simple 2 qubit

example system. Here, we will show how the different buiditocks of the quantum Metropolis algorithm
can be represented with simple quantum circuits. For thisees to consider a quantum computer of 5
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qubits. Let us assume that we want to simulate the Gibbsssthittne Heisenberg ferromagnet on 2 spin
1/2s,i.e.

1
HQ:—i(of@)a;—l-cr?l’@crg—l-crf@a;), (79)

which is certainly one of the most interesting Hamiltonidos 2 qubits. With the appropriate energy
offset, this Hamiltonian has the spectrdiy 2}, where the eigenvalugis threefold degenerate. This is
very good news, as it means that an exact phase estimationitiaig can be set up with just a single (qu)bit
of accuracy. Such a phase estimation requires simulate¢itimiltonian for a time¢ = 7/2. One sees
that this unitary corresponds exactly to the SWAP gate. iBhat

U (g) — ¢~i5H2 — SWAP, (80)
In the quantum Metropolis algorithm, we need to implemeetcbntrolled version of this SWAP, which
is the Fredkin gate. In [40], it has been shown how this Fredkite can be implemented efficiently using
optics. A related gate, the so-called Toffoli gate, was mégerealized in the group of R. Blatt with an
ion trap computer [41]. The second gate to be implementdueisontrolled Metropolis unitarif”. The
Metropolis unitary can be implemented with two controlied rotations:

W(bs) = Ry(=0s)c X Ry(05)c, (81)

where we have made use of the standard single qubit unRg(y,) = exp(—z'%ﬁoy) and wroteX = o7,
The temperature can be controlled by the arfigle Comparison with the original Metropolis unitafyl (2)
shows that we have to sets(63) = e~#. The full circuit is depicted in Fid.]5. Note that this cirtui
can be simplified, if we regard the lowest qubit as a clasditalwhich is determined by the first phase
estimation. Itis possible to condition the remainder ofdineuit on the first phase estimation result. Then
the controlled Metropolis unitarl#” can be implemented by a single CNOT operation.

Let us briefly recall the necessary steps that are neededdlenment the algorithm for this five-qubit
example crcuit. Since the phase estimation procedure ist,etkee algorithm simplifies greatly and all
assumptions for the steps described in sefion 3 are met.iWewall the steps again in this paragraph, so
that the section is sufficiently self-contained. We willwever, be less general and focus the description on
the two-qubit Heisenberg Hamiltonian. The qubits that cosegthe circuit are labeled according to Fiy. 5,
even though the order in which they are written correspoadiséd notation used in the remaining part of
the paper. This means that the first register, labeled)by; contains the physical state of the system from
which we sample. The second registér contains the value of the first phase estimation as indidated
the operatiorF (see Fig[ha). Register number three is comprised of thetfaumhit|-)4 and is used for
the second phase estimation procedure which is part of iy ( see Figlhb). Finally, the fourth and
last register is given by the accept/reject qubit numbee5| 5.

Step 0: Initialize the full circuit to the inital state

[v0) = 10 0)23]0)1]0)4]0)s.
After the initialization continue witt&ep 1.

Step 1: We currently are in a state that is of the form

o) = [1)23]0)1]0)4(0)s5,
where|y)q3 is some arbitrary two-qubit state stored in the second andl dlubit. Apply the phase estima-
tion mapkF as given in ( see Fif] 5a) amekasure qubit number 1.

4

o) = Elto) = > (ile)) |¢5)23]E:)1]0)4]0)s  applyE
=1

= Y1) = [¥i)23|Ei)1]0)4]0)5. measure qubit 1

Here thejt);) denote the eigenvectors of the Heisenberg Hamiltonian thithenergies marked hy,; €
{0,1}. GotoSep 2.
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Step 2: We start by drawing a random unita€ywith respect to a uniform probability distribution from
the set of Pauli matricefr3, 0%, 05, 05} acting on either of the two qubits labeled Bynd3. We now
apply the corresponding unitaty of Fig.[3b to the stat@/,).

4 4
[2) = Ulpr) = Zxki\/E|¢k>23|Ei>1|Ek>4|1>5 + ZIM\/ 1 — fril¥r)2s|Ei)1|Ek)4]0)s.
=1 =1

Here, ther;; denote the matrix elements 6fin the eigenbasis off andf;; stems form thé?” matrix (2),
which is implemented by (81) and depicted in Eib. 5b.
Measure qubit number 5.

accept: If the measurement outcomelighe corresponding state is proportional to

1
[W4) oY @i/ frilthn)2s Ei)1| Ex)al1)s.
k=1

We then measure the second phase estimation register amumfi qubit numbet. With a probability
proportional to|zy; | fx; the resulting state will collapse to an eigenstate of the iamian that is of the
form

[Yr)23| Ei)1|Ex)all)s.
Then go toStep 4.

reject: Otherwise, if the measurement outcome will(bend the state is proportional to

4
1) o Zwki\/ L — friltbr)2sl Ei)1| Ex)al0)s,
k=1
we have to start the rejection procedure. G&#p 3.

Step 3: We need to reject the proposed update. To this end we havepieriment the measurement
scheme as indicated in Fidl] 3. The first thing we need to dodgpply the adjoined/ of the unitary in
Fig.[b to|y)_ ). We are left with the state

|1/Jrej> = UT|1/J—>
Starting from this state, we implement the following measuent scheme.
Measure the projector P, (Fig.[Hc),

where the outcome = 1 corresponds to the case where the two energies agree andttioenes = 0 to
the the case where two energies disagree.

success = 1 This outcome heralds that the energies coincide and thatieezssfully returned to the
state prior to the proposed upd#ie Hence we have returned to a state in the enétggubspace. Go to
Sep 4.

failure s = 0 We have failed to return to the original energy subspace nvand the state and to return
to the original state we have to introduce a further binaojgutive measuremen}s. The measurementis
related to the unitary/ in the following manner. First we apply again, then weneasure qubit |-)5, and
finally we applyUT. Hence the), measurement reads

Qs = Ut L3 @4 ® |5><5|5 U.

We now have to alternate the measureméntaand P;. That is, we now repeatedly apply,, disregard
the measurement outcome and apBly

Qs = Psl,_og = Qs = Ps|,_q---

until we measure the projectdt; once. The corresponding plan of action is given by Hi@). 3. fEsalt
Py indicates, that we have successfully returned to the ariginergy subspace. Go 8ep 4.
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Step 4: To finalize the single application of the Metropolis rule, agve to clean up the ancilla registers
and prepare them for a subsequent application. The cutsgetaf the system is of the form

[Yr)o3|Ei)1|Ek)als)s.

This state has to be mapped to

[Vk) 23 Ei)1|Ek)als)s — |1k)23]0)1(0)4]0)5.

This prepares a new input state for the subsequent applicafithe Metropolis rule. We now have to
return toStep 1.

This completes the description of the Metropolis algorithirhe number of times the sequence of the
Steps 1 -4 has to be repeated before a valid sample is prépagtated to the mixing time of the algorithm
( see section 312). Note, that a different choice for theauigis{C'} in Step 2 is also possible. The only
requirements are that the probability of applyifigs equal to that of applying'f, and that the updates
allow transitions between all the eigenstates.

9 Simulation of quantum many-body systems

It would go far beyond the scope of this paper to give a falthficount on only the most eminent appli-
cations of the quantum Metropolis algorithm to the simolatdf quantum many-body systems. We will
therefore give only a brief sketch in this section on how weeet that the devised quantum algorithm will
aid in the computation of static properties of some notaiphbard problems in quantum physics that have
eluded direct computation for large system sizes by clabsieans. Such problems are for instance the
determination of the phase diagram of the Hubbard modetdheputation of binding energies of complex
molecules in quantum chemistry, and the determination@htidron masses in gauge theories. Common
to these problems is that the particles are strongly intexgéermions and bosons. We expect that it is
this class of problems where our algorithm will be able tcedive strongest contributions. At this point
we would like to point out, that the quantum Metropolis aitfon is not plagued by the notorious sign
problem, because the algorithm allows one to sample dyr@cthe eigenbasis of the Hamiltonian. This
can be done irrespectively of whether the degrees of freeaterhosonic or fermionic.

In order to implement the quantum Metropolis algorithm faspecific many-body Hamiltoniafl, we
need to be able to perform the phase estimation algorithmieaffly. The central subroutine that needs
to be implemented is therefore the simulation of the timdwdian for the Hamiltoniand ® p, as was
discussed previously in sectibh 5. The simulation methatiileed in [19] relies on the fact that we are
able to decompose the Hamiltonian into a sum of local Hamigies;,, with H = ", h;, that can be
simulated by themselves on a quantum computer efficientlynethod to rephrase fermionic or bosonic
degrees of freedom in terms of the quantum computationakésemf freedom , that is in terms of qubits,
is therefore needed. Such a program was devised In [30, #anddve merely give a brief overview here
and refer the reader to the corresponding references.

The Hubbard model: The Hubbard model[42] is based on a tight binding approximnahat describes
electrons in a periodic potential confined to move only inltweest Bloch band. The Hubbard Hamil-
tonian consists of a hopping term and an interaction terrttewrin form of fermionic creatiomia and
annihilatione; , operators that act on a lattice sits a regular lattice ofV sites. 7

H=-t Z (c;acjp + C;r-_rgci,g) + UZ”Z’A”M (82)

This Hamiltonian has to be expressed in terms of spin degregsedom in order to be implemented in
the standard quantum circuit formulation. The interactenm can be seen to be implementable directly
since the particle density; , operator acts only locally and is bosonic in nature. The @n@ntation of
the hopping term is a bit more challenging. Consider for dicitp the hopping term for a single electron
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spin only. This part can be expressed in terms of the JordigméNtransformation, cf. Fid.] 6, as

1 i—1 =
Y 5 (or@ltoh)o] + ol (©lTla00eY) (83)
<t,j>

once a specific order of th¥ lattice sites has been chosen. As is shown in[Hig. 6 the yretaslution of
each individual summand can be implemented with a cost tadés at most linearly with the total system
size [43[44]. More general fermionic Hamiltonians can bplamented in a similar fashion.

Quantum chemistry A central problem in Quantum chemistry is the determinatibmolecule proper-
ties. The major challenge is the determination of the ebdechinding energies that need to be computed
in dependence of the nuclei position. The general appraatis problem is to solve the approximate
Hamiltonian of the electronic degrees of freedom that arikee to the Born-Oppenheimer approximation.
In this approximation the nuclei positions are externaapagters in the electronic Hamiltonian. The calcu-
lation of the molecule properties relies on the fact thateleetronic energy can be determined efficiently
in dependence of the nuclei position. In their paper [45s$6h and Aspuru-Guzik show how a quantum
computer could be used to determine molecule propertiesiateathat is a constant multiple of the time
needed to compute the molecular energy. The algorithnmereliea black box that computes the molecular
energy for every configuration. The quantum Metropolis madtban function as this black box algorithm,
which was missing so far. For the Metropolis algorithm to kyayne needs to implement the phase esti-
mation procedure for the chemical Hamiltonian of interdsis shown in [46], that the phase estimation
procedure can be implemented efficiently for a general stgoantized chemical Hamiltonian.

Gauge theories The current most common non-perturbative approach to QGHllson’s lattice gauge
theory [47], which maps the problem to one of statistical hagtics, where the Euclidean action now
assumes the role of a classical Hamilton function. It isdéfae reasonable to assume, that lattice gauge
theories would also be the method of choice for the quantumndyelis algorithm. However, the algorithm
relies on a Hamiltonian formulation of the problem. Suchm@folation is given by Kogut and Susskind’s
[48] Hamiltonian formulation of lattice gauge theories3ir- 1 dimensions. Here th&-dimensional space
is discretized and put on a cubic lattice, while time is leftttnuous. The fermions reside on the vertices
of the lattice, while the gauge degrees of freedom are putelirtks. The physical subspace is required to
be annihilated by the generators of the gauge transformaté all physical states need to satisfy Gauss’s
law.

It turns out however, that this approach seems to be verytbdandplement on a quantum computer. This
is due to the fact that each of the links carries a Hilbert sghat is infinite dimensional, namely the space
of all square integrable functions on the correspondinggawoupSU (V). A finite approximation to this
Hilbert space therefore leads immediately to a breakdowhefinderlying symmetry.

A different formulation of gauge theories, that does notesufom this problem, is therefore needed. Such
a formulation is given in terms of quantum link models inwnodd by Horn[[40]. Brower et al. showed
that QCD and in general aryU (N) gauge theory can be expressed as a quantum link model [58je In
guantum link formulation the classical statistical medbsaiproblem is replaced by a problem formulated
in terms of quantum statistical mechanics in which the atas&uclidean action is replaced by a quantum
Hamiltonian. The central feature is that the correspontitigert space of the gauge degrees of freedom at
each link is now finite. It suffices that each link o6&/ (V) link model carries a single finite representation
of SU(2N). This is achieved by formulating the problem4n+ 1 dimensions, where the four physical
dimensions correspond to the actual physical Euclideacespiame, while the fifth Euclidean dimension
plays the role of an additional unphysical dimension. Z4témensional Euclidean space time is discretized
and lives on a cubic lattice. Furthermore, it was shown byiroet al. [50], that the continuum limit is
obtained by sending the fifth unphysical Euclidean dimemssoinfinity, which corresponds to preparing
the ground state of the lattice Hamiltonian. It can be sdextthed 4 1 dimensional link models are related
to standard gauge theories in 4 dimensions via dimensiedalktion[51].

The full Hilbert space of th&U (3) gauge theory can be written as the tensor product2ofdimensional
Hilbert space for each link of the lattice and the finite disienal fermionic Hilbert space that resembles
the quarks. In contrast to the standard lattice gauge thedne configuration space of the quantum link
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model resembles that of quantum spin models.

The physical spectrum, and by that the Hadron masses, atdimensional theory can be obtained from
computing the correlation functions in the Euclidean dimton the ground state of thedimensional
lattice Hamiltonian.
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Figure 1: Fig. (a) The first step of the quantum circuit: thautis an arbitrary state)) and twor-qubit reg-
isters initialized td0)”. Quantum phase estimatidnis applied to the state and the second register. The en-
ergy value in this register is then copied to the first regisyea sequence @hot gates. An inverse quantum
phase estimation is applied to the state and the secontiegisg. (b) The elementary step in the quantum
circuit: the input is the eigenstaf;) with energy registe|;) and two registers initialized t9)" and|0).
The unitaryC' is then applied, followed by a quantum phase estimation atejpthe coherent Metropolis
gateW. The state evolves as followsy;)|E;)|0)[0) — C|;)|E;)[0)[0) = >, xh|vw)|Ei)|0)[0) —

Sk VR EDER)I0) = 3y ai/ TR ED ER)L) + Xy afv/T = Filn) | Ei)| Ex)|0) with fi =
min (1, exp (—B(E; — Ex))). Fig. (c) The binary measurement checks whether the endrtfyecstate
|1} is the same as the energy of the original dnig. This is done by using an extra register containing
phase estimation ancillas, a step that checks whether érg\eis equal tav; or not, and finally an undoing
of the phase estimation step that preserves coherence.
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Figure 2: The circuit corresponds to a single applicatiothef mapE. The first stepE prepares an
eigenstate of the Hamiltonian, The second stgp, measures whether we want to accept or reject the
proposed update. In the “reject” case the complete quaninenitccomprises a sequence of measurements
of the Hermitian projectorg§); and P;. The recursion is aborted whenever the outcdPhés obtained,
which indicates that we have returned to a state with the sameegy as the input. Because each itera-
tion has a constant success probability, the overall piiityabf obtaining the outcome;, approaches 1
exponentially with the number of iterations.
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Figure 3: Given an input staté), we first perform phase estimation to collapse to an eigenaith known
energyE. This graph represents the plan of action conditioned oulifferent measurement outcomes of
the binaryP and@ measurements. Each node in the graph corresponds to améuliate state in the
algorithm. One iteration of the map is completed when wehlreae of the final leafs labelled by either

accept or reject. The sequenEe— @1 — L corresponds to accepting the update, all other leafs to a
rejection.
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Figure 4. Inverse gap of the quantum Metropolis mafi’at 0 as a function of the number of spins in
a chain with Hamiltoniar{ = >, X Xi41 + YiYey1 + gZ5. The update rule is a single-spin flip;;
remarkably, this single gate is enough to ensure ergodiTitye observed linear scaling indicates that, at

least in the case of 1D spin chains with nearest - neighborilttarians, the quantum Metropolis algorithm
converges in polynomial time.
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Figure 5: Fig. (a) describes the first phase estimation stepeocircuit. Since the phase estimation
of the two-qubit Heisenberg Hamiltonian can be implememteattly by the Fredkin gate, a single phase
estimation operation is sufficient. In Fig . (b) the elementanitary of the circuit is depicted. The angle
of the controlled-controlled?, (65) rotation needs to be chosen such that(ds) = e~#. The final
measuremenp is depicted in Fig. (c). The first phase estimation has to Bevied by a measurement

which verifies that the two phase estimation bits are equa. ghase estimation is then undone so fhat
is a Hermitian projector.
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Figure 6: A fermionic many particle Hamiltonian can be siatal on a quantum computer by mapping the
fermionic degrees of freedom to spin-1/2 particles [43, &ich a mapping is given by the famous Jordan-
Wigner transformation. Here, the fermionic algebra camndpeessed in terms of the.(2) algebra viat:L =

— (®)}07) o}, wheres}" = 1 (oF +io}). The dynamical part of the fermionic many-body Hamiltonian
often contains terms of the forty,; = chj + c}ck, which become non-local after the transformation.
Operators that are not adjacent in terms of the labelinghaftentain a chain of Pauli* operators in
between them. A typical term of this kind that occurs aftés transformation i}, = alf(®f;,i+1crf)af.

To simulate the time evolution of such a non-local term on anqum computer, we need to be able to
decompose this unitary into two qubit gates. Given the twibaties Vy; = exp(ifojof) andU; =
exp(i5 o)) such a decomposition is indeed possible as depicted in tneeatircuit for the evolution of

exp(—ieofoso%).
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