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A family of logarithmic Sobolev inequalities on finite dimensional quantum state
spaces is introduced. The framework of non-commutative Lp-spaces is reviewed and
the relationship between quantum logarithmic Sobolev inequalities and the hyper-
contractivity of quantum semigroups is discussed. This relationship is central for
the derivation of lower bounds for the logarithmic Sobolev (LS) constants. Essential
results for the family of inequalities are proved, and we show an upper bound to the
generalized LS constant in terms of the spectral gap of the generator of the semigroup.
These inequalities provide a framework for the derivation of improved bounds on
the convergence time of quantum dynamical semigroups, when the LS constant and
the spectral gap are of the same order. Convergence bounds on finite dimensional
state spaces are particularly relevant for the field of quantum information theory.
We provide a number of examples, where improved bounds on the mixing time of
several semigroups are obtained, including the depolarizing semigroup and quantum
expanders. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804995]

I. INTRODUCTION

Logarithmic Sobolev inequalities were originally introduced by Gross in 1975,1, 2 who related
them to the hypercontractivity of semigroups. Initially, the main focus was on the investigation of
logarithmic Sobolev (LS) inequalities, or in short Log-Sobolev inequalities, on infinite dimensional
state spaces, until Diaconis and Saloff-Coste used these inequalities to bound the L1-mixing time of
finite dimensional classical Markov processes.3 A tantalizing example of where these inequalities
have given rise to some of the tightest known mixing time bounds for continuous time Markov
processes is in the analysis of Ising-type spin systems under Glauber dynamics (see Refs. 4 and 5
for more details).

In this paper we generalize the mixing time bounds based on logarithmic Sobolev inequalities
to finite dimensional quantum (i.e., non-commutative) state spaces. We consider completely positive
trace-preserving semigroups in continuous time, described by time-independent generators, which
can always be cast in Lindblad normal form.6 Quantum generalizations of Log-Sobolev inequalities
on infinite dimensional C* algebras have already been considered in Ref. 7 for a specific unital
fermionic semigroup and were later generalized8 to arbitrary reversible semigroups to investigate
hypercontractivity in non-commutative Lp spaces.9, 10 Here, we will work exclusively on finite
dimensional state spaces and derive bounds on the trace-norm or L1-norm distance between the
steady state and the non-equilibrium state of the quantum Markov processes.

A central motivation for studying the mixing time behavior of quantum mechanical semigroup
stems from the field of quantum information theory, where several questions relate to problems
of estimating the time scales of dissipative processes. Indeed, a prime example is the study of
decoherence11 of extended quantum systems, where in particular one would like to construct realistic
physical systems, that can retain quantum information for long times.12 The central question in this
and other studies is how the time to reach equilibrium scales in the system size. Other applications
can be found in the investigation of the run times of quantum algorithms based on quantum Markov
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processes.13, 14 Furthermore, the derivation of rigorous bounds on the thermalization time of quantum
mechanical systems poses a central problem in the endeavor of understanding statistical mechanics
from the microscopic quantum theory.15

Before we proceed with the formal exposition of the subject, let us first consider a simple
example, which already illustrates the possible benefit of bounding the mixing time of quantum
Markov processes in terms of the Log-Sobolev constant rather than with other figures of merit, such
as the spectral gap.

A. Motivation

We assume some familiarity with the standard notation of quantum dynamical semigroups in
this section.16 The full formal framework will be introduced in Sec. II.

The mixing time of a quantum Markov process is the time it takes for the process to become
close to the stationary state, starting from any initial state. The distance between two states is usually
measured in terms of the trace norm, ‖A‖tr = tr[|A|], since it possesses the appropriate operational
interpretation as a distinguishability measure.17 Let σ be the stationary state of a semigroup gen-
erated by the quantum dynamical master equation ∂tρt = L∗(ρt ), where L is the Liouvillian in the
Heisenberg picture. Then, the mixing time is defined as

τmix (ε) = min {t |‖ρt − σ‖tr ≤ ε for all input states ρ0 } . (1)

Bounds to the trace norm distance for quantum processes have been derived18 in terms of the spectral
properties of the generators. If the semigroup has a unique full rank stationary state, a general upper
bound on the trace distance can be obtained:

‖ρt − σ‖tr ≤
√

1/σmine−λt , (2)

where σ min is the smallest eigenvalue of the stationary state and λ denotes the spectral gap of
a particular symmetrization of the Liouvillian L. For reversible processes (semigroups satisfying
detailed balance), λ coincides with the spectral gap of L. This convergence bound stems from a
bound on the evolution of the quantum χ2-divergence. The χ2-divergence is defined as χ2(ρ, σ )
≡ tr[(ρ − σ )σ − 1/2(ρ − σ )σ − 1/2] and yields an upper bound to the trace norm distance of the form
‖ρ − σ‖2

tr ≤ χ2(ρ, σ ). As our example, let us consider the depolarizing semigroup on some Hilbert
space H ∼= Cd . The generator of a depolarizing semigroup acts on an observable f as

Ldepol( f ) = γ

(
1

d
tr [ f ] − f

)
. (3)

The semigroup generated by Ldepol is unital and has as its stationary state σ = 1/d. Furthermore,
it satisfies detailed balanced and thereby has a real spectrum.18 It is relatively easy to see that the
spectral gap λ of Ldepol is given by λ = γ . Furthermore, given that σ = 1/d, we get that σ min

= d− 1. We are therefore left with the bound ‖ρt − σ‖tr ≤ √
de−γ t . Hence, we can give a bound on

the mixing error by choosing t ≥ 1/γ log
(√

dε−1
)

. The mixing time bound derived from Eq. (2)

then scales as

τχ2 = O(log(d)). (4)

The trace norm allows for another upper bound, given in terms of the relative entropy D(ρ‖σ )
= tr[ρ(log (ρ) − log (σ ))]. Indeed, by the quantum Pinsker inequality,19 ‖ρ − σ‖2

tr ≤ 2D (ρ‖σ ).
In a spirit similar to the χ2-bound, we aim to give a bound on the evolution of the relative entropy.
Assuming again, that ρ t evolves according to L∗, we find that the derivative of D(ρ t‖σ ) is given by

∂t D (ρt‖σ ) = tr
[
L∗(ρt ) (log(ρt ) − log(σ ))

]
. (5)

The goal is to find a lower bound on the derivate of the relative entropy in terms of itself, i.e.,

2α1 D (ρt‖σ ) ≤ −tr
[
L∗(ρt ) (log(ρt ) − log(σ ))

]
. (6)
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Such a bound on the derivative of D(ρ‖σ ) leads to a time-dependent bound on the trace distance,
(c.f. theorem 22), of the form:

‖ρt − σ‖tr ≤
√

2 log (1/σmin) e−α1t . (7)

Note, the time-independent prefactor now only involves the logarithm of the smallest eigenvalue of
σ . This can lead to a dramatic improvement of the mixing time bound, if the constant α1 is of the
same order as the gap of the Liouvillian. We will show later, that the constant α1 is in fact always
upper bounded by the spectral gap λ for reversible Markov processes.

Returning to our example of the depolarizing channel Ldepol, we observe, that with σ = 1/d,
we get

− tr
[
L∗

depol(ρt ) (log(ρt ) − log(σ ))
]

= γ D(ρt‖σ ) + γ D(σ‖ρt ) ≥ γ D(ρt‖σ ), (8)

since D(σ‖ρ) ≥ 0 for all states ρ. We are therefore led to the conclusion, that the inequality (6)
can be satisfied with the lower bound γ /2 = λ/2 ≤ α1. Given the bound (7), we have to choose
t ≥ 2/γ log (2log (d)ε − 2) in order to ensure that the state ρ t deviates at most ε from the stationary
state in trace distance. We therefore have that the Log-Sobolev bound (7) gives an exponential
improvement:

τL S = O(log(log(d))), (9)

over the χ2-bound (4) considered before.
The discussion we have given here illustrates the central idea of the logarithmic Sobolev (LS)

inequality based approach to rapid mixing of continuous time Markov processes. The inequality given
in Eq. (6) is one example of a particular LS inequality. We will introduce the general framework
shortly and also explain the connection it has to the phenomenon of hypercontractivity. The example
of the depolarizing channel considered here is an instance, where the LS inequality approach gives
an exponentially improved bound over the more common spectral gap approach. This will be true
whenever the constant α1 (and subsequently the spectral gap λ) is independent of the system size.
More generally, whenever α1 and λ are of the same order, the Log-Sobolev approach to mixing will
be beneficial. To prove that this is the case is however a difficult task for specific problems, and in
particular is not always the case. One example, where no improvement is found, is for expander
maps. There, the LS constant scales with the system size in such a fashion that the improvement
gained through the smaller pre-factor is rendered useless (see Sec. V).

B. Informal exposition

The bound on the convergence we have stated in the example (Eq. (7)), in terms of the relative
entropy and the constant α1, is actually not the canonical Log-Sobolev inequality, which is commonly
used to bound the mixing time in classical systems. The arguments which we have presented
here rather correspond to the modified Log-Sobolev inequality (sometimes called entropy-entropy
production inequalities) considered in Refs. 20 and 21. In fact, there exists an entire family of Log-
Sobolev inequalities indexed by some p ∈ [1, ∞), which stem from arguments of hypercontractivity
of the semigroup. To derive mixing time bounds, however, we only make use of two particular
cases, which correspond to the values of (p = 1, 2). The inequality which corresponds to p = 2,
with constant α2, is the quantum generalization of the canonical classical inequality, which already
has seen generalizations to the quantum setting in the aforementioned Refs. 7, 8, and 22–24. This
inequality for α2 does have the advantage of being in a simpler form than the rather involved
inequality for α1. However, this simplicity comes at a price. It is not possible to immediately
bound the trace norm in terms of the relative entropy and this constant (α2). For the p = 2 Log-
Sobolev inequality, further inequalities are necessary. In the quantum setting the derivation of these
inequalities is hampered by the non-commutativity of the operators. In this paper we show that these
inequalities hold for a large class of semigroups (referred to as Lp-regular). We devise a criterion
(already considered in Refs. 8, 22, and 23) to verify Lp regularity, which is related to the convexity
of a trace-norm function. We then show that some of the most commonly used semigroups satisfy
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Lp-regularity. We conjecture that this condition in fact holds for all semigroups on finite state spaces.
The organization of the article is as follows:

In Sec. II we define the formal framework of non-commutative Lp spaces, originally introduced
in Refs. 8–10 and 24. These spaces constitute the formal backbone of the hypercontractivity results
for quantum semigroups. The central element is the Lp-norm ‖a‖σ , p, which is weighted with respect
to some full rank density matrix σ . In our analysis, it will be chosen to correspond to the stationary
state of the semigroup. We state some elementary results for these spaces and connect them to a
class of relative entropy functionals.

We then proceed to define a family of quantum Dirichlet forms Ep( f ) for the generator L of
the quantum semigroup, which will be the starting point for the definition of quantum logarithmic
Sobolev inequalities. A central result of this section is the definition of Lp-regularity, which allows
to relate different Dirichlet forms in this family to each other and to prove a partial ordering of
Log-Sobolev constants relating α2 to the constant α1 used to derive the mixing time bounds.

In Sec. III we define the general family of Log-Sobolev inequalities and establish the connection
between hypercontractivity and LS inequalities. A lower bound to the spectral gap λ of a reversible
generator L in terms of the LS2-constant α2 has already been proven in Ref. 8. The main contribution
of this chapter is the lower bound on the spectral gap in terms of α1, which in turn implies the bound
on α2 for Lp-regular channels due to the partial order of the Log-Sobolev constants.

We then investigate in more detail the Lp regularity condition and its connection to a trace
functional, which was already considered in Ref. 8. We show that convexity of this trace functional
implies the Lp-regularity condition. We then use this functional form to show that several important
families of Liouvillians, including Davies generators,25, 26 satisfy Lp-regularity.

Section IV is devoted to the rigorous derivation of mixing time bounds. The results proved in
Secs. II and III are put together, and a formal derivation of the mixing time bounds is given. We
point out a physical interpretation of the LS1 inequality and the associated quantities, and state the
mixing time bounds, both in terms of α1 and α2.

Finally, in Sec. V, we consider applications of the aforementioned results and derive mixing
time bounds for some well-known simple generators. Here we also show, how the hypercontractivity
of the associated semigroup can be used to obtain bounds on the Log-Sobolev constants. We provide
a brief outlook in Sec. VI.

II. FORMAL FRAMEWORK

To start with, we will need to introduce the necessary formal framework. Logarithmic Sobolev
inequalities and their connection to hypercontractivity on quantum state spaces are most naturally
formulated in the language of non-commutative Lp spaces, previously defined and analyzed in
Refs. 8–10 and 24. In an effort to make this paper as self-contained as possible, we will restate many
of the main results on non-commutative Lp spaces, and introduce them in a self-consistent manner.

Throughout this paper we will be working exclusively with operators acting on finite Hilbert
spaces (d-dimensional), which are isomorphic to the algebra of d-dimensional complex matrices
Md

∼= Cd×d , when equipped with an inner product. We denote the set of d-dimensional Hermitian
operators Ad = {X ∈ Md , X = X†}, as well as the subset of positive definite operators A+

d = {X
∈ Ad , X > 0}. The set of states will be denoted Sd = {X ∈ Ad , X ≥ 0, tr [X ] = 1}, and the full
rank states will be analogously denoted S+

d . Observables will always be represented by lower case
Latin letters ( f, g ∈ Ad ) and states by Greek letters (ρ, σ ∈ Sd ).

The central property of the non-commutative state spaces to be introduced below is that the
norm as well as the scaler product is weighted with respect to some full rank reference state σ ∈ S+

d .
This weighting can be expressed in terms of a map acting on elements f ∈ Ad by writing

�σ ( f ) = σ 1/2 f σ 1/2. (10)

We would like to point out that this choice of �σ is not unique, in fact there exists an entire
family of modular operators which could be used. The map �σ actually corresponds to the inverse
of the modular operator present in Monotone Riemannian metrics of non-commutative information
geometry.18, 27 These are intimately related to monotone metrics on manifolds of quantum states;
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see Refs. 18, 28, and 29 and references therein for more details. This particular choice of �σ is
however very natural in that it is itself a completely positive map and its particular form allows for
simplified manipulations. For notational convenience we will also introduce powers of the operator
�σ as �

p
σ ( f ) = σ

p
2 f σ

p
2 . The non-commutative Lp spaces are equipped with a weighted Lp-norm

which, for any f, g ∈ Ad and some σ ∈ S+
d , is defined as

‖ f ‖p,σ = tr

[
| �

1
p
σ ( f ) |p

] 1
p

= tr
[

| σ
1

2p f σ
1

2p |p
] 1

p
. (11)

Similarly, the σ -weighted non-commutative Lp inner product is given by

〈 f, g〉σ = tr [�σ ( f )g] = tr
[
σ 1/2 f σ 1/2g

]
. (12)

Finally, we will also make extensive use of the Lp variance which is defined as

Varσ (g) = tr [�σ (g)g] − tr [�σ (g)]2 . (13)

It can easily be seen that, for any g, f ∈ Ad and σ ∈ S+
d , the variance is always positive (Varσ (g)

≥ 0), and that it is invariant under the transformation g → g + c1, whenever c ∈ R.
In the remainder of the paper, unless specified otherwise, we will always be working with the

Lp norms and inner products. The reference state should always be clear from the context, and will
almost always be the unique full rank stationary state of some Liouvillian.

In the following lemma, we summarize a number of important results concerning non-
commutative Lp spaces, which will be used repeatedly in the remainder of the paper. Proofs and
discussions of these properties can be found in Refs. 9 and 10.

Lemma 1. The non-commutative Lp spaces satisfy a:

1. Natural ordering of the Lp norms: Let f ∈ Ad and σ ∈ S+
d , then for any p, q ∈ [1, ∞)

satisfying p ≤ q, we get ||f||p, σ ≤ ||f||q, σ .
2. Hölder-type inequality: Let f, g ∈ Ad and σ ∈ S+

d , then for any p, q ∈ [0, ∞) satisfying 1/p
+ 1/q = 1,

| 〈 f, g〉σ | ≤ || f ||p,σ ||g||q,σ . (14)

3. Duality: Let f ∈ Ad and σ ∈ S+
d , then for any p, q ∈ [0, ∞) satisfying 1/p + 1/q = 1,

|| f ||p,σ = sup{〈g, f 〉σ , g ∈ Ad , ||g||q,σ ≤ 1}. (15)

We now define several important functionals on the non-commutative Lp spaces and analyze
their basic properties. These quantities are non-commutative Lp versions of a number of known
classical quantities.

Lemma 2 (The Lp power operator). Let f ∈ Ad , and σ ∈ S+
d , then for any p, q ∈ [1, ∞) define

the Lp power operator as:

Ip,q ( f ) = �−1/p
σ

[|�1/q
σ ( f )|q/p

] = σ
− 1

2p

∣∣∣σ 1
2q f σ

1
2q

∣∣∣q/p
σ

− 1
2p . (16)

For any f ∈ Ad and p, q ∈ [1, ∞), it satisfies the following properties:

1. ||Ip,q ( f )||p
p,σ = || f ||qq,σ .

2. Ip, p( f ) = f, and Ip, r ◦ Ir, q = Ip, q, for any r ∈ [1, ∞).
3. Ip, q(cf ) = cq/pIp, q( f ), for any positive real c ≥ 0.

The Lp power operator acts in many ways like the usual matrix power operator. In particular, if
the reference state is proportional to the identity (σ = 1/d), then Ip, q( f ) = f q/p.

When acting on positive definite observables ( f ∈ A+
d ), the infinitesimal structure of the non-

commutative Lp norms gives rise to an entropic functional which is intimately related to the relative
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entropy. Consider the directional derivative of the Lp power operator on the Lp space, and define
the operator valued relative entropy as

Sp( f ) = −p∂s Ip+s,p( f )|s=0, (17)

where for f ∈ A+
d and s ≥ 0, Sp( f ) can be evaluated explicitly and is given by

Sp( f ) = �−1/p
σ [�1/p

σ ( f ) log [�1/p
σ ( f )]] − 1

2p
{ f, log σ }. (18)

Definition 3 (The Lp relative entropy). Given σ ∈ S+
d , and for any f ∈ A+

d we define the Lp

relative entropy to be

Entp( f ) = 〈
Iq,p( f ), Sp( f )

〉
σ

− || f ||p
p,σ log || f ||p,σ , (19)

where 1/p + 1/q = 1 and p ≥ 1.

The Lp-regularized relative entropy and the Lp norms can be further related by the following
theorem, a proof of which can be found in Ref. 8.

Theorem 4. Given f ∈ A+
d , we have that for any differentiable p ≡ p(t) ≥ 1,

d

dt
|| f ||p

p,σ = ṗ
〈
Iq,p( f ), Sp( f )

〉
σ

, (20)

where 1/p + 1/q = 1.

Theorem 4 articulates the relationship that exists between the infinitesimal structure ofLp norms
and theLp relative entropy. This relationship is what enables the one-to-one correspondence between
Log-Sobolev inequalities and hypercontractivity, which are, respectively, global and infinitesimal
descriptions of the same contraction behavior of quantum dynamical semigroups.

Finally, we point out that the Lp relative entropies with (p = 1, 2) play a special role within the
family, and we will repeatedly make use of them in this paper. For the sake of clarity, we therefore
write them out explicitly:

1. The L1 relative entropy:

Ent1( f ) = tr
[
�σ ( f )(log(�σ ( f )) − log(σ ))

] − tr [�σ ( f )] log(tr [�σ ( f )]). (21)

2. The L2 relative entropy:

Ent2( f ) = tr
[(

�1/2
σ ( f )

)2
log

(
�1/2

σ ( f )
)] − 1

2
tr
[(

�1/2
σ ( f )

)2
log (σ )

]
(22)

−1

2
‖ f ‖2

2,σ log
(‖ f ‖2

2,σ

)
.

These two quantities can be related to each other and to the regular relative entropy as follows:

Lemma 5. Let σ, ρ ∈ S+
d and f ∈ A+

d , then

1. Ent2(I2,1( f )) = 1
2 Ent1( f ).

2. Ent2(�−1/2
σ (

√
ρ)) = 1

2 D(ρ‖σ ), where D( · ‖ · ) is the usual relative entropy.
3. Ent1(�−1

σ (ρ)) = D(ρ‖σ ).
4.

〈
Iq,p( f ), Sp( f )

〉
σ

= 2
p

〈
I2,p( f ), S2(I2,p( f )

〉
σ

, for any p, q ≥ 1
satisfying 1/p + 1/q = 1.

Proof. The above four identities can be obtained by straightforward manipulation of the quan-
tities involved. �
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Note: It is clear that the Lp relative entropies are ill-behaved for observables which are not
strictly positive definite. In fact, as will be discussed later in Sec. IV, one can interpret the restriction
to positive definite operators as a restriction to so called relative densities, which will be introduced
later. These relative densities are the only type of operators which will be needed to derive the mixing
time results.

A. Dirichlet forms

Throughout this paper, the time evolution of an observable ( ft ∈ Ad ) will be described by one-
parameter semigroups of completely positive trace preserving maps (cpt-maps), whose generator
(Liouvillian) can always be written in standard Lindblad form:6

∂t ft = L( ft ) ≡ i[H, ft ] +
∑

i

L†
i ft Li − 1

2
{L†

i Li , ft }+, (23)

where Li ∈ Md are Lindblad operators and H ∈ Ad is a Hamiltonian operator. We will denote
the semigroup generated by L by Tt ≡ exp(tL). This evolution corresponds to the dynamics in the
Heisenberg picture, which specifies the dynamics on observables rather than states. We denote the
dual of L, with respect to the Hilbert-Schmidt inner product, by L∗ which amounts to the evolution
of states, i.e., the Schrödinger picture. The trace preserving condition ensures that L(1) = 0. If in
addition L∗(1) = 0, then the dynamics are said to be unital.

A Liouvillian L is said to be primitive if it has a unique full-rank stationary state. As the
framework of non-commutative Lp spaces depends on a full rank reference state, which will most
often be the stationary state of a some dissipative dynamics, we will almost exclusively consider
primitive Liouvillians. A discussion of primitivity in the context of quantum channels is given in
Ref. 30, where several different characterizations are provided.

A special class of Liouvillians which we will often consider are the ones which satisfy quantum
detailed balance. A discussion about this class of maps and the corresponding conditions can be
found for instance in Ref. 18 and 31–33. The definition we will be working with is the following:

Definition 6 (Detailed balanced). We say a Liouvillian L : Md → Md satisfies detailed bal-
anced (or is reversible) with respect to the state σ ∈ S+

d , if �σ ◦ L = L∗ ◦ �σ .

The class of reversible generators has a number of particularly nice properties. The one most
often exploited is that if L satisfies detailed balance with respect to some σ ∈ S+

d , then σ is a
stationary state of L. Furthermore, the detailed balance condition ensures that the generator is
Hermitian with respect to the weighted inner product 〈f, g〉σ , which ensures that L has a real
spectrum.

The particular Lindblad form of L ensures that for any positive constant t, etL is a cpt-map,6

which inherits the properties of unitality, primitivity, and reversibility from its generator L. Unless
otherwise specified, we will assume that the reference state of the non-commutative Lp spaces is the
unique full rank stationary state of some primitive Liouvillian, and we denote this stationary state
σ , i.e., L∗(σ ) = 0.

One of the fundamental tools in the classical theory of Log-Sobolev inequalities, and more
generally in the classical theory of analytical methods for Markov chain mixing, is the Dirichlet
form. We define a non-commutative Lp regularized versions of it.

Definition 7 (Lp Dirichlet forms). Given a primitive Liouvillian L : Md → Md with stationary
state σ , we define its Lp Dirichlet form:

Ep( f ) = −p

2(p − 1)

〈
Iq,p( f ),L( f )

〉
σ

, (24)

for any f ∈ Ad , where p ≥ 1 with 1/p + 1/q = 1.
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The Lp Dirichlet forms are well defined even in the limit of p = 1, which along with the p = 2
case plays a special role in the remainder of the paper. These two forms reduce to

Proposition 8. The Lp Dirichlet forms for p = 1 and p = 2 are

1. For p = 2,

E2( f ) = −〈 f,L( f )〉σ . (25)

2. The limit limp→1 Ep( f ) exists an is given by

E1( f ) = −1

2
tr
[
�σ (L( f ))(log(�σ ( f )) − log(σ ))

]
. (26)

Proof. Let f ∈ Ad , then E2( f ) takes on this simple form by definition. When considering the
form E1( f ), observe that we have limp→1 Ip/(p−1),p( f ) = 1, hence we can apply l’Hôpitales rule.
We have

lim
p→1

Ep( f ) = −1

2
∂p

〈
Ip/(p−1),p( f ),L( f )

〉
σ

∣∣∣∣
p=1

. (27)

So we need to compute ∂pIp/(p − 1), p( f )|p = 1, for which one can see easily that

∂p Ip/(p−1),p( f )
∣∣

p=1 = − log(σ ) + log (�σ ( f )) , (28)

since we can write for the power operator:

Ip/(p−1),p( f ) = �
( 1

p −1)
σ

[
exp

(
(p − 1) log

(
�

1
p
σ ( f )

))]
. (29)

When we apply the product rule for the derivative and express

∂p exp

(
(p − 1) log

(
�

1
p
σ ( f )

))∣∣∣∣
p=1

= ∂p

∞∑
n=0

(p − 1)n

n!
log

(
�

1
p
σ ( f )

)n
∣∣∣∣∣

p=1

(30)

= log (�σ ( f )) ,

we get the desired result. Inserting (28) into (27) we are left with the form E1( f ) as stated in the
proposition. �

Note that, as its name suggests, the Dirichlet form usually has two distinct arguments E( f, g).
However, in all of the following we will consider these arguments to be identical, and hence we do
not feel the need to define the more general form. It was shown in Ref. 24 that, Ep( f ) ≥ 0 for all
p ∈ [1, ∞) and for any f ∈ Ad . In the special case when p = 2 then we additionally get that the
Dirichlet form is invariant under the transformation f → f + c. In the remainder of the paper, when
referring simply to the Dirichlet form, we mean the L2 Dirichlet form.

In order to relate the Dirichlet forms for different p, in particular for p = 1 and p = 2, we need
to introduce certain regularity conditions. These conditions will play a crucial role in the remainder
of the work.

Definition 9 (Lp-regularity). We say that the Liouvillian L : Md → Md is weakly Lp-regular
if for all p ≥ 1, and all f ∈ Ad , we have

Ep( f ) ≥
{

E2(I2,p( f )), 1 ≤ p ≤ 2

(p − 1)E2(I2,p( f )), p ≥ 2.
(31)

Furthermore, we say that L is strongly Lp-regular if for all p ≥ 1, and all f ∈ Ad , we have

Ep( f ) ≥ 2

p
E2(I2,p( f )). (32)
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A variant of strong Lp-regularity was already considered in Ref. 8, where only reversible gen-
erators were investigated. Indeed, one can construct examples of non-reversible balanced channels
which do not obey the strong Lp regularity condition, by considering classical generators and em-
bedding them into the present framework. The weak Lp-regularity condition is a generalization
which allows to prove hypercontractivity and mixing time results, even when the channel is not
reversible.

As already pointed out, the p = 1 and p = 2 Dirichlet forms are the most relevant to us in
our exposition and analysis. The p = 2 form allows for simple access to the spectral gap of the
Liouvillian via a variational characterization. Note that, in general when referring to the spectral
gap of a Liouvillian, one mostly focuses on reversible maps, since otherwise the spectrum of the
Liouvillian can be non-real. However, it is also possible in the general case to define a real constant λ

which relates to the mixing time of the semigroup in the same fashion as the gap does for reversible
Liouvillians. This constant would indeed be the spectral gap of the additive symmetrization of the
Liouvillian: 1

2 (L + �σL∗�−1
σ ). A more detailed discussion can be found in Ref. 18.

Definition 10. The spectral gap λ of the primitive Liouvillian L : Md → Md with stationary
state σ is defined as

λ = min

{ E2(g)

Varσ (g)

∣∣∣∣ g ∈ Ad , Varσ (g) �= 0

}
. (33)

One can easily verify that E2(g) is real and positive for all g ∈ Ad . This follows from the fact that
the L2 Dirichlet form of L and of 1

2 (L + �σL∗�−1
σ ) are equal. Note, that the minimum is actually

attained by choosing g as the eigenvector that corresponds to the first non-vanishing eigenvalue, i.e.,
the spectral gap λ of the Liouvillian symmetrization. We will see later that, as a consequence, this is
also the relevant constant for non-reversible balanced maps when we bound the L2-mixing time.

III. HYPERCONTRACTIVITY AND LOG-SOBOLEV INEQUALITIES

In this section, we introduce the Log-Sobolev inequalities and prove their basic properties. In
particular, we show that they are equivalent to hypercontractivity of the semigroup. We show that
there exists a partial ordering of the Log-Sobolev constants for different p, and that the p = 1, 2
Log-Sobolev constants lower bound the spectral gap of the Liouvillian.

Let us start by formally defining a set of general Log-Sobolev inequalities. We will later see
that only two special cases (p = 1, 2) will be of interest to us, but it will often be convenient to work
with the entire family.

Definition 11. Let 1/p + 1/q = 1, with q ≥ 1, and let L : Md → Md be a Liouvillian. Assume
that L has a full rank stationary state (σ ∈ A+

d ). We say that L satisfies a p-Log-Sobolev inequality
(LSp), if there exists a positive constant αp > 0 such that

αpEntp( f ) ≤ Ep( f ), (34)

for all f ∈ A+
d . We call the largest αp for which Eq. (34) holds the Log-Sobolev constant.

We will often simply say that “LSp holds” to mean that L satisfies a p-Log-Sobolev inequality.
It should be noted that this definition of the generalized Log-Sobolev inequalities reduces to the
well-known classical definition given for instance in Ref. 34, when restricted to commutative state
spaces. We will also need a working definition of hypercontractivity in order to state and prove the
main theorems of this section.

Definition 12. Let L : Md → Md be a Liouvillian, and let Tt be its associated semigroup.
Assume that L has a unique full rank stationary state (σ ∈ A+

d ). If

||Tt ( f )||p(t),σ ≤ || f ||2,σ (35)

whenever p(t) = 1 + e2αt for some α > 0, then the semigroup is said to be hypercontractive.
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We note that a slightly more general definition of hypercontractivity can be given where we
define p(t) = 1 + (p0 − 1)e2αt, and then consider the contraction of ||Tt ( f )||p(t),σ ≤ || f ||p0,σ .
However, as it is customary in the literature to consider p0 = 2, and all of the applications considered
in this paper use only the p0 = 2 case, we chose it as our definition.

Before proving the equivalence between Log-Sobolev inequalities and hypercontractivity, we
will need to establish a partial ordering between the Log-Sobolev inequalities. The relations between
the different LSp are summarized in the following proposition.

Proposition 13. Let L : Md → Md be a primitive Liouvillian with stationary state σ . If L is
strongly Lp-regular, then α2 ≤ αp for all p ≥ 1. If L is weakly Lp-regular, then α2 ≤ 2αp for all
p ≥ 1.

Proof. This lemma follows by simple manipulation of the non-commutative Lp norms and inner
products. Indeed, by Lemma 5

〈
Iq,p( f ), Sp( f )

〉
σ

= 2

p

〈
I2,p( f ), S2(I2,p( f )

〉
σ

, (36)

if 1/p + 1/q = 1. And since ||I2,p( f )||22,σ = || f ||p
p,σ for all f ∈ Ad and all q ≥ 1, then setting

g ≡ I2, p( f ), LS2 implies

2

p
〈g, S2(g)〉σ − 2

p
||g||22,σ log ||g||2,σ = 〈

Iq,p( f ), Sp( f ))
〉
σ

− || f ||p
p,σ log || f ||p,σ (37)

≤ 2

pα2
E2(I2,p( f )). (38)

Hence, assuming strong Lp regularity, we get Entp( f ) ≤ 1
α2
Ep( f ) for all f ∈ A+

d , while as-

suming weak Lp regularity, we can only ensure that Entp( f ) ≤ 2
α2
Ep( f ) for all f ∈ A+

d . �

This partial ordering will be very relevant when it comes to expressing mixing times bounds in
terms of Log-Sobolev constants.

In order to state the main theorem relating Log-Sobolev inequalities to hypercontractivity, we
will need an essential lemma (first proved in Sec. 3 of Ref. 8), which relates the Lp norms to LSp

inequalities.

Lemma 14. Let L : Md → Md be a primitive Liouvillian with stationary state σ , and define
p ≡ p(t) ≡ 1 + e2αt, with α > 0. Then, for f ∈ A+

d , we have

d

dt
log || ft ||p,σ = ṗ/p

|| f ||p
p,σ

{Entp( f ) − 1

α
Ep( f )}, (39)

where 1/p + 1/q = 1, and p ≥ 2.

The proof is provided in Ref. 8. The next theorem relates LS2 to hypercontractivity of the
semigroup and constitutes the cornerstone of the abstract theory of Log-Sobolev inequalities.

Theorem 15. Let L : Md → Md be a primitive Liouvillian with stationary state σ , and let Tt

be its associated semigroup. Then

1. If there exists an α > 0 such that for any t > 0, ||Tt( f )||p(t), σ ≤ ||f||2, σ for all f ∈ A+
d and 2

≤ p(t) ≤ 1 + e2αt. Then L satisfies LS2 with α2 ≥ α.
2. If L is weakly Lp-regular, and has an LS2 constant α2 > 0, then ||Tt( f )||p(t), σ ≤ ||f||2, σ for all

f ∈ A+
d , and any t > 0 when 2 ≤ p(t) ≤ 1 + eα2t . If, furthermore, L is strongly Lp regular,

then the above holds for all t > 0 when 2 ≤ p(t) ≤ 1 + e2α2t .
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Proof. We start by proving the first statement: “hypercontractivity implies Log-Sobolev in-
equality.” The hypercontractivity condition and convexity of the logarithm imply that for p(t)
= 1 + e2α2t

log || ft ||p(t),σ < log || f ||2,σ , (40)

for all f ∈ A+
d . Therefore, taking the derivative at t = 0 from the right yields

d

dt
|| ft ||p(t),σ |t=0 ≤ 0. (41)

Then using Lemma 14, we get that

d

dt
|| ft ||p(t),σ |t=0 = α

|| f ||22,σ

(Ent2( f ) − 1

α
E2( f )) ≤ 0, (42)

which immediately implies LS2 with α2 = α.
Now, for the inverse implication, assume that L satisfies a Log-Sobolev inequality with LS2

constant α2. If L is weakly Lp regular, then by Proposition 13, L satisfies a LSp with 2αp ≥ α2, for
any p ≥ 2. In particular, Lemma 14 guarantees that for p(t) = 1 + eαt,

d

dt
|| ft ||p(t),σ ≤ 0. (43)

Integrating this expression from 0 to t immediately gives hypercontractivity of the semigroup. If,
furthermore, L is strongly Lp regular, then the same reasoning guarantees hypercontractivity with
p(t) = 1 + e2αt. �

Hypercontractivity can be seen as a global statement of the contractivity of the semigroup, while
the Log-Sobolev inequality is the equivalent infinitesimal statement. Depending upon the task at
hand, it might be more convenient to work in one picture or the other. See, for instance, the analysis
of expanders maps in Sec. V which crucially builds on this correspondence.

Hypercontractivity provides a quantitative statement of the (worst case) convergence behavior
of a map (semigroup) whereas simple contractivity just guarantees that the map is monotone.
Hypercontractivity is a statement at the operator level (Heisenberg picture), and is hence much
more amenable to infinite dimensional analysis. In fact the roots of the framework and of the tools
introduced in this paper were developed for infinite dimensional systems.22, 23

Finally, we state the main new result of this section, which relates the Log-Sobolev constant α1

to the spectral gap λ, for primitive reversible Liouvillians. A result relating the LS2 constant α2 to
twice the spectral gap was first proved in Ref. 8 for reversible Liouvillians. The following can be
seen as a strengthening of their result for Lp-regular Liouvillians.

Theorem 16. Let L : Md → Md be a primitive reversible Liouvillian with stationary state σ .
The Log-Sobolev constant α1 and the spectral gap λ of L are related as

α1 ≤ λ. (44)

Proof. Let g ∈ Ad , and define fε = 1 + εg, where ε ∈ R+ is chosen in such a way that fε ∈ A+
d .

Clearly, as ε → 0, this is true. We now expand both sides of the inequality:

α1Ent1( fε) ≤ E1( fε), (45)

in powers of ε up to second order.
Let us first focus on the left side of the inequality. We have that

Ent1( fε) = tr
[
�σ ( fε) (log(�σ ( fε)) − log(σ ))

] − tr [�σ ( fε)] log (tr [�σ (( fε)]) . (46)

We start by expanding the terms which involve tr[�σ (fε)]. We immediately have that tr[�σ (fε)]
= 1 + ε tr[�σ (g)], which due to the Taylor expansion of the natural logarithm yields

tr [�σ ( fε)] log (tr [�σ ( fε)]) = ε tr [�σ (g)] + ε2

2
tr [�σ (g)]2 + O(ε3). (47)
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We now turn to the expansion of the remaining contributions in the renormalized entropy. For the
expansion of the first term, we need to use the integral representation of the logarithm of an operator,

log(A) =
∫ ∞

0

1

t
− 1

t + A
dt. (48)

The difference log (A) − log (B) can also be expressed as

log(A) − log(B) =
∫ ∞

0

1

t + B
(A − B)

1

t + A
dt, (49)

due to the operator identity:

A−1 − B−1 = A−1 (B − A) B−1. (50)

The expression tr[�σ (fε)(log (�σ (fε)) − log (σ ))] can be written in terms of the following operator
function:

log(�σ ( fε)) − log(σ ) = ε

∫ ∞

0

1

t + σ
�σ (g)

1

t + σ + ε�σ (g)
dt, (51)

which we will expand up to second order in ε. Note that we can write

(t + σ + ε�σ (g))−1 = (t + σ )−1 − (t + σ )−1 + (t + σ + ε�σ (g))−1 (52)

= (t + σ )−1 − ε(t + σ )−1�σ (g) (t + σ + ε�σ (g))−1 ,

due to the operator identity of Eq. (50). This Dyson like recursion for (t + σ + ε�σ (g))− 1 gives
rise to the following expansion:

log(�σ ( fε)) − log(σ ) = ε

∫ ∞

0

1

t + σ
�σ (g)

1

t + σ
dt

− ε2
∫ ∞

0

1

t + σ
�σ (g)

1

t + σ
�σ (g)

1

t + σ
dt + O(ε3). (53)

Since �σ (fε) = σ + ε�σ (g) we are left with the following approximation up to second order:

tr
[
�σ ( fε) (log(�σ ( fε)) − log(σ ))

] = ε

∫ ∞

0
tr

[
σ

(t + σ )2
�σ (g)

]
dt

−ε2
∫ ∞

0
tr

[
σ

(t + σ )2
�σ (g)

1

t + σ
�σ (g)

]
dt

+ε2
∫ ∞

0
tr

[
1

t + σ
�σ (g)

1

t + σ
�σ (g)

]
dt + O(ε3). (54)

The integrals are conveniently evaluated in the basis in which σ = ∑
α σα| α〉〈α | is diagonal. It

follows that ∫ ∞

0
tr

[
σ

(t + σ )2
�σ (g)

]
dt = tr [�σ (g)] . (55)

The other two integrals which occur at order ε2 evaluate to∫ ∞

0
tr

[
σ

(t + σ )2
�σ (g)

1

t + σ
�σ (g)

]
dt = 1

2

∑
α,β

σασβ

σβ − σα

log

(
σβ

σα

)
| 〈α | g | β〉 |2 (56)

and ∫ ∞

0
tr

[
1

t + σ
�σ (g)

1

t + σ
�σ (g)

]
dt =

∑
α,β

σασβ

σβ − σα

log

(
σβ

σα

)
| 〈α | g | β〉 |2. (57)
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We observe, that Eq. (56) is just 1/2 of the integral in Eq. (57). The expansion of the full
renormalized entropy can therefore be expressed as

Ent1( fε) = ε2

2

(∫ ∞

0
tr

[
1

t + σ
�σ (g)

1

t + σ
�σ (g)

]
dt − tr [�σ (g)]2

)
+ O(ε3). (58)

The right side of Eq. (45) can also be expanded to second order in ε by making use of Eq. (53) and
by observing that �σ (L( fε)) = ε�σ (L(g)). We therefore have that

E1( fε) = −ε2

2

∫ ∞

0
tr

[
�σ (L(g))

1

t + σ
�σ (g)

1

t + σ

]
+ O(ε3). (59)

If we now divide both sides of Eq. (45) by ε2/2 and take the limit ε → 0, we are left with

α1
(
tr [�σ (g) σ (g)] − tr [σ g]2

) ≤ −tr
[
L∗(�σ (g)) σ (g)

]
, (60)

where we have defined the cpt-map:

σ (A) =
∫ ∞

0

σ 1/2

t + σ
A

σ 1/2

t + σ
dt. (61)

This cpt-map is self-adjoined with respect to the canonical Hilbert-Schmidt scalar product and
furthermore has the property that it commutes with the map �σ . Direct computation in the eigenbasis
of the stationary state σ = ∑

α σα| α〉〈α | > 0 yields the spectrum of σ , which is given by

ξα,β =
√

σασβ

σβ−σα
log

(
σβ

σα

)
. It can be verified easily that the spectrum obeys 0 < ξα, β ≤ 1. Hence the

map σ is a positive definite operator.
Let us now introduce new variables v = �

1/2
σ (g) and define Qσ = �

−1/2
σ ◦ L∗ ◦ �

1/2
σ . Equation

(60) can now be rewritten as

α1
(
tr [v σ (v)] − tr

[
σ 1/2 v

]
tr
[
σ 1/2 σ (v)

]) ≤ −tr [Qσ (v) σ (v)] , (62)

where we have made use of the fact that σ (σα) = σα , for all α ∈ [0, 1]. We change the notation for
convenience. We denote by | v〉 = v ⊗ 1 | I 〉 the vectorization of the matrix v on Md

∼= Cd2
, where

| I 〉 = ∑
k | kk〉 ∈ Cd2

. Furthermore, on this space the maps Qσ and σ act as matrices, which we
denote by Q and S, respectively. We can therefore rewrite Eq. (62):

〈v | (α1
(∣∣√σ

〉 〈√
σ
∣∣ − 1

) − Q
)

S | v〉 ≥ 0. (63)

If we define the matrix L = α1
(∣∣√σ

〉 〈√
σ
∣∣ − 1

) − Q the problem of finding the lower bound to
the gap λ in terms of the Log-Sobolev constant α1 reduces to proving the positivity of the matrix L.
Since 〈g | L†S | g〉 ∈ R, we have to show that the positivity of the map M = 1

2

(
S L + L† S

)
, which

holds due to the inequality (63) implies that L ≥ 0. Since we are considering generators that satisfy
detailed balanced, this implies that the matrix Q is Hermitian and therefore so is L. The equation:

M = 1

2
(S L + L S) ≥ 0 (64)

is equivalent to the well studied Sylvester equation AX − XB = Y, which posses the unique solution
X = ∫ ∞

0 exp(−At)Y exp(Bt)dt , if the spectra of A and B are disjoined and positive definite as well
as negative definite, respectively, cf. Theorem VII.2.3 of Ref. 35. If we identify now A = S, B = − S
as well as X = L and 2M = Y, we see that we can write

L = 2
∫ ∞

0
e−St Me−St dt. (65)

Hence we have that L is positive semi-definite since it can be expressed as the convex sum of matrices
congruent to M ≥ 0. Thus, we have that 〈v | L | v〉 ≥ 0, which upon rearranging and back substitution
yields

α1
(
tr [�σ (g) g] − tr [�σ (g)]2

) ≤ −tr [�σ (g) L(g)] . (66)

Thus, we have found that the constant α1 is a lower bound to the spectral gap λ. �
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Given the partial ordering of the Log-Sobolev constants for weakly Lp -regular generators, we
note that this result, in particular, implies that the same holds for α2 ≤ λ. Note that furthermore a
general bound on λ as defined in Definition (33) can be given without the assumption of reversibility,
when the generator L is unital.

Corollary 17. Let L : Md → Md be a primitive unital Liouvillian with LS1 constant α1 and
spectral gap λ. Then, α1 ≤ λ.

Proof. This follows directly from the fact that the map  as defined in Eq. (61) is the identity,
so Eq. (60) immediately yields the bound for the symmetrization of L. �

A. Lp-regularity

In this section we discuss the conditions of strong and weak regularity, and provide three
important classes of examples where these conditions can be proved to hold. To start with, we
show that these conditions follow from the analytical properties of a particular trace functional, also
defined in Ref. 8, as follows:

Lemma 18. LetL : Md → Md be a primitive Liouvillian with stationary state σ , and associated
semigroup Tt = etL. Given g ∈ A+

d and t > 0, define the one-parameter trace functional:

h(s) = tr
[
σ s/4g2−sσ s/4Tt

(
σ−s/4gsσ−s/4

)]
(67)

on the real interval s ∈ [0, 2]. If for all g ∈ A+
d and t ≥ 0, h(s) is convex for s ∈ [0, 2] , then L is

weakly Lp-regular. Furthermore, if for all g ∈ A+
d and t > 0, h(s) is symmetric about s = 1, and

completely monotone for s ∈ [0, 2] , then L is strongly Lp-regular.

Proof. In order to prove the theorem, we first note that the function h(s) can be written in terms
of the Lp inner product as

h(s) = 〈
I2/(2−s),2( f ), Tt ◦ I2/s,2( f )

〉
σ

, (68)

for the choice g = σ 1/4fσ 1/4 and f ∈ A+
d . Then it can be seen that h(0) = h(2) = || f ||22,σ for any

t ≥ 0. Assume that h(s) is convex in s, we therefore get the two inequalities:

h(s) ≤ (1 − s)|| f ||22,σ + sh(1), for all s ∈ [0, 1], (69)

h(s) ≤ (2 − s)h(1) + (s − 1)|| f ||22,σ , for all s ∈ [1, 2]. (70)

These inequalities correspond to the two secants which can be drawn from h(0) to h(1), as well as
from h(1) to h(2), respectively. We now relate p to s via p = 2/(2 − s). For the first inequality
(Eq. (69)) we have that s ∈ [0, 1], which implies p ∈ [1, 2]. Similarly, we have for Eq. (70) that p ∈
[2, ∞). Let us focus on the inequality in Eq. (69). It implies that

〈
Ip,2( f ), Tt ◦ Ip/(p−1),2( f )

〉
σ

≤
(

1 − 2(p − 1)

p

)
‖ f ‖2

2,σ ,+2(p − 1)

p
〈 f, Tt ( f )〉σ . (71)

If we now rearrange both sides of the inequality and divide by 1/t, we can take the limit t → 0, which
because L = limt→0

1
t (Tt − id) yields

− 〈 f,L( f )〉σ ≤ − p

2(p − 1)

〈
Ip,2( f ),L ◦ Ip/(p−1),2( f )

〉
σ

. (72)

The substitution f = I2, p(f ′) now yields E2(I2,p( f ′)) ≤ Ep( f ′). The second inequality (Eq. (9)) in the
definition for weak Lp regularity is obtained from Eq. (70) by the same arguments.

The proof for strong Lp-regularity is very similar. Assume that for s ∈ [0, 2], h(s) is completely
monotone and symmetric about s = 1. Complete monotonicity implies that h is differentiable and
that ( − 1)nh(n)(s) ≥ 0 for any s ∈ [0, 2]. Hence, if for some s0, ( − 1)nh(n)(s0) ≥ 0 for all n, then
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this holds for any s ∈ [0, 2] by Taylor expansion. Observe, furthermore, that since h(s) is symmetric
about s = 1, it follows that ( − 1)nh(n)(1) = 0 for all n odd. Thus,

h(s) = h(1) + (s − 1)2
∞∑

n=1

h(2n)(1)(s − 1)2n

(2n)!
(73)

≤ h(1) + (s − 1)2
∞∑

n=1

h(2n)(1)

(2n)!
(74)

= h(1) + (s − 1)2(h(2) − h(1)) (75)

= h(1) + (s − 1)2(|| f ||22,σ − h(1)). (76)

The above inequality can be rewritten in terms of the Lp inner product as

〈
Iq,2( f ), Tt ◦ Ip,2( f )

〉
σ

≤ 4(p − 1)

p2
〈 f, Tt ( f )〉σ +

(
1 − 4(p − 1)

p2

)
|| f ||22,σ , (77)

where p ≡ 2/s and 1/p + 1/q = 1. This inequality gives rise to the strong Lp-regularity, by similar
arguments as for the weak Lp-regularity case. �

We note that these conditions on h(s) are sufficient, but not necessary for proving Lp-regularity.
There could exist examples of semigroups which satisfy weak or strong Lp-regularity without
h(s) being convex or completely monotone, respectively. In fact, the natural question arises of
whether there exist semigroups which are notLp-regular? We have performed rudimentary numerical
searches, and have not found any such examples, which leads us to state the following conjecture:

Conjecture 19. Let L : Md → Md be a primitive Liouvillian. Then L is weakly Lp-regular. If,
furthermore, L is reversible, then it is strongly Lp-regular.

It should be pointed out, that strong Lp regularity cannot hold for all non-reversible Liouvillians,
as we have come up with simple numerical counterexamples.

1. Examples

We will consider three examples of frequently encountered Liouvillians which satisfy weak
and/or strong Lp regularity: (a) primitive unital Liouvillians, (b) projection Liouvillians, and
(c) thermal Liouvillians.

(a) Primitive Unital Liouvillians: Let L : Md → Md be a primitive unital Liouvillian, with
associated semigroup Tt. For any given t > 0, let {Aj(t)} be the Kraus operators of Tt. Given some
g ∈ A+

d and t > 0, it follows that

h(s) = tr
[
g2−s Tt (g

s)
] =

∑
j

tr
[
g2−s A†

j (t)g
s A j (t)

]
. (78)

We can now work in the eigenbasis of g = ∑
k gk| k〉〈k | and see that the individual summands can

be written as

tr
[
g2−s A†

j (t)g
s A j (t)

]
=

∑
kl

g2
k

(
gl

gk

)s

| 〈l | A j (t) | k〉 |2. (79)

Hence, h(s) can always be written as the sum of exponentials in s with positive weights and is
thus always convex in s, irrespective of the specific form of the Ai(t). If, on top of being unital,
the primitive Liouvillian L is reversible, then it satisfies strong Lp regularity. This follows from
Lemma 18, because h(s) is symmetric about s = 1 by the detailed balance condition, and hence all
odd derivatives are zero at s = 1. Furthermore, every even derivative is positive by Eq. (79), which
implies that primitive reversible unital semigroups are strongly Lp-regular.
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(b) Projection Liouvillians: A projection Liouvillians is one whose semigroup projects onto a
given density matrix σ starting from any initial state. The Liouvillians can be written explicitly as
L( f ) = γ (tr [ f σ ] 1 − f ), and the associated semigroup as Tt ( f ) = (1 − e−tγ )tr [σ f ] 1 + e−tγ f . If
we choose σ ∈ S+

d , then the projection Liouvillian is clearly primitive and reversible. Given some
g ∈ A+

d and t > 0, h(s) can be written explicitly as

h(s) = (1 − e−tγ )tr
[
σ s g2−s

]
tr
[
σ 1−s gs

] + e−tγ tr
[
g2
]
. (80)

Then, expanding in the eigenbasis of σ = ∑
a σ a| a〉〈a | and of g = ∑

k gk| k〉〈k | yields

h(s) = (1 − e−tγ )
∑
abkl

(
σagl

σbgk

)s

g2
k σb| 〈a|k〉 |2| 〈b|l〉 |2 + e−tγ tr

[
g2] . (81)

Thus, we can again write h(s), up to an additive constant, as a sum of exponentials in s weighted by
positive coefficients. It follows by the same arguments as in example (a) that the function is symmetric
about s = 1 and completely monotone, and consequently that primitive projective semigroups are
strongly Lp-regular.

(c) Thermal Liouvillians: We call thermal Liouvillians, the subclass of Liouvillians which
describe the dissipative dynamics resulting as the weak (or singular) coupling limit of a system
coupled to a large heat bath. These Liouvillians are often called Davies generators.25, 26 See Ref. 36
for a clear derivation and a discussion of when this canonical form can be assumed.

Thermal Liouvillians can always be written as

Lβ = L0 +
∑
k,ω

Lk,ω. (82)

The individual terms are given by

L0( f ) ≡ i[H, f ] − 1

2

∑
k,ω

ηk(ω){S†
k (ω)Sk(ω), f }+ (83)

Lk,ω( f ) ≡ ηk(ω)S†
k (ω) f Sk(ω), (84)

where ω are the so-called Bohr frequencies and the k index reflects the couplings to the environment.
In particular, k can always be chosen such that k ≤ d2. ηk(ω) are the Fourier coefficients of the
two point correlation functions of the environment, and are bounded. The Sk(ω) operators can be
understood as mapping eigenvectors of H with energy ω to eigenvectors of H with energy E + ω,
and hence act in the Liouvillian picture as quantum jumps which transfer energy ω from the system
to the bath. Thermal Liouvillians always satisfy detailed balance. In physical terms this means that
it is as likely for the system to transfer an amount ω of energy to the environment as it is for the
environment to transfer the same amount back to the system.

The thermal map can be seen to have a unique (full-ranked) stationary state which is given by
σβ ∝ e− βH, where β is the inverse temperature of the heat bath. The following useful relations hold
for any k and ω:

ηk(−ω) = e−βωηk(ω), (85)

σβ Sk(ω) = eβωSk(ω)σβ, (86)

where Eqs. (85) and (86) are equivalent to the detailed balance condition for Lβ . These in particular
allow us to show the following.

Theorem 20. Let Lβ : Md → Md be the generator of a (bounded) thermal semigroup of H at
temperature β. Then Lβ is strongly Lp-regular.

Proof. As in examples (a) and (b), we will show that for any g ∈ A+
d and t > 0, the func-

tion h(s) is completely monotone for s ∈ [0, 2]. We point out that h(s) can be rewritten as h(s)

= tr
[
g2−s�

s/2
σβ

◦ Tt ◦ �
−s/2
σβ

(gs)
]
, where Tt ≡ etLβ .
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Observe that Eqs. (85) and (86) imply,

�s/2
σβ

◦ Lβ ◦ �−s/2
σβ

= L0 +
∑
k,ω

e−sβωLk,ω. (87)

Now, we want to invoke the quantum trajectories expansion of thermal semigroups (see Ref. 37 for
a recent account of this technique). It can be seen that a thermal semigroup can always be written as

etL =
∫

dξWt (ξ ), (88)

where writing �t ≡ etL0 ,

Wt (ξ ) = �t1Lk1,ω1�t2−t1 . . . �tn−tn−1Lkn ,ωn �t−tn , (89)

and ξ = (t1, k1, ω1; . . . ; tn, kn, ωn) is a given quantum trajectory with 0 ≤ t1 ≤ . . . ≤ tn ≤ t. This
representation is not restricted to thermal semigroups, but in fact holds for any quantum dynamical
semigroup. It appears under different names in the literature: quantum trajectories, unraveling of the
master equation, quantum stochastic (or Itô) calculus. The integral is shorthand for∫

dξ ≡
∑
n,�k, �ω

∫
�dt ≡

∞∑
n=0

∑
k1,...,kn

∑
ω1,...,ωn

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1. (90)

This expansion in terms of quantum trajectories is norm convergent if the operators �t and
Lkn ,ωn have a bounded interaction rate (cf. Ch. 5 of Ref. 25), that is if we have that for any such
operator there exists a constant K such that tr [Wt (ξ )(ρ)] ≤ K tr [ρ]. Since we are working on a finite
dimensional Hilbert space, this is clearly the case.

From Eqs. (87) and (89), we get

�s/2
σβ

◦ etL ◦ �−s/2
σβ

=
∫

dξe−sβ
∑

n ωnWt (ξ ). (91)

Finally, plugging this expression into h(s), and considering the spectral decomposition
g = ∑

k gk| k〉〈k |, we get

h(s) =
∫

dξe−sβ
∑

n ωn tr
[
g1−sWt (ξ )(gs)

]
(92)

=
∫

dξe−sβ
∑

n ωn
∑
i, j

g1−s
i gs

j tr [| i〉 〈i |Wt (ξ )(| j〉 〈 j |)] (93)

=
∑

n, �ω,i, j

e−sβ
∑

n ωn g1−s
i gs

j

∫
�dt
∑

�k
tr [| i〉 〈i |Wt (ξ )(| j〉 〈 j |)] , (94)

where Wt (ξ ) is a completely positive map for any trajectory ξ , thus it allows for a Kraus decompo-
sition. This implies that the trace in Eq. (94) is always positive. This, together with the convergence
of (88), ensures that (93) converges absolutely so we can exchange the summation and the integrals.
We can now invoke the same arguments as in example (a) to justify that h(s) is completely monotone
and symmetric about s = 1. Hence, by Lemma 18, we get that thermal Liouvillians are strongly
Lp-regular. �

As we have already pointed out, we do not know of any Liouvillians which do not satisfy the
Lp regularity condition. This has led us to conjecture that this condition should always hold in finite
dimensions. Proving this remains an open challenge. We have investigated three example classes
of primitive Markov processes which we expect to find broad applications in quantum information
theory. In Sec. V, we will discuss a few of them. To the best of our knowledge, these three example
classes also correspond to the only family of processes to which classical Log-Sobolev inequalities
have been applied. The known applications of classical Log-Sobolev inequalities are processes
which either converge to a uniform mixture (i.e., unital processes), for instance expanders and
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random walks, or to thermal processes which converge to the Gibbs distribution, such as the Glauber
dynamics for the Ising model.

IV. MIXING TIME BOUNDS

We are now ready to discuss the convergence behavior of dynamical semigroups on finite state
spaces. To quantify the convergence behavior of these processes we need to choose an appropriate
norm that quantifies the deviation from the stationary state of the process. The convergence is most
often estimated in trace norm, ‖A‖tr = tr[|A|], because of its operational interpretation,17 as being
the optimal distinguishability between two states, when given access to arbitrary measurements.
However, it is much more convenient to work with other distance measures, when considering
mixing time bounds. The two more relevant measures we will work with are the χ2- divergence and
the relative entropy. For any pair of states ρ ∈ Sd and σ ∈ S+

d , the following bounds are known:18, 19

‖ρ − σ‖2
tr ≤

{
χ2(ρ, σ ) = tr

[
(ρ − σ )�−1

σ (ρ − σ )
]

2 D(ρ‖σ ) = 2 tr
[
ρ (log(ρ) − log(σ ))

]
.

(95)

We have already stated in the Introduction that one of the main motivations for introducing Log-
Sobolev inequalities in the finite system setting is to derive improved bounds on the convergence time.
The intuitive way of understanding the Log-Sobolev based bounds is by realizing that the mixing
time bound which is associated to the spectral gap λ of the generator arises through bounding the
dynamical behavior of the χ2-divergence, whereas the Log-Sobolev constant arises when one bounds
the dynamics of the relative entropy directly.

To establish the connection between trace norm mixing time bounds and the theory of Log
Sobolev inequalities, let us introduce the relative density of some state ρ ∈ Sd with respect to the
full rank state σ ∈ S+

d , which is defined as

ρσ ≡ �−1
σ (ρ) = σ−1/2ρσ−1/2. (96)

This immediately allows us to relate the weighted 2-norm and the variance to the quantum χ2-
divergence. We have that

χ2(ρ, σ ) = tr
[
(ρ − σ )�−1

σ (ρ − σ )
] = ‖ρσ − 1‖2

2,σ = Varσ (ρσ ). (97)

In the same way as for observables and states, we can define a natural dynamical equation for
the relative density. It is given by the map:

L̂ = �−1
σ ◦ L∗ ◦ �σ , (98)

which can be seen as the dual of L with respect to the σ weighted inner product 〈 · , · 〉σ . This map
defines the dynamics of the relative density via ∂tρ

σ
t = L̂(ρσ

t ), as can easily be verified. Furthermore,
it is again a valid generator of a completely positive semigroup in the Heisenberg picture, with the
same stationary state σ , i.e., L̂(1) = 0 as well as L̂∗(σ ) = 0. The fact that L̂ is the generator of a cpt-
map follows from the particular form of �σ , since �σ as well as its inverse are completely positive
maps. Hence we have that the composition exp(tL̂) = �−1

σ ◦ exp(tL∗) ◦ �σ is again completely
positive. In general, when we want to construct mixing time bounds on the trace distance in terms
of the Log-Sobolev inequalities, we will need to work with L̂ instead of L. However, in the special
case where L is reversible, we have that L̂ = L. In order to avoid confusion, we will denote the
corresponding Dirichlet forms, where we have replaced the generator L with L̂ by Êp. Note however
that for p = 2, we get E2( f ) = Ê2( f ) for every f ∈ Ad .

We now proceed to derive the general mixing time bounds.

Lemma 21. Let L : Md → Md be a primitive Liouvillian with stationary state σ .

1. Let λ be the spectral gap of L, i.e., λVarσ (g) ≤ Ê2(g) for all g ∈ Ad . Then,

Varσ ( ft ) ≤ e−2λt Varσ ( f ). (99)
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2. Let α1 be the LS1 constant of L̂, i.e., α1Ent1( f ) ≤ Ê1( f ), for all f ∈ A+
d . Then,

Ent1( ft ) ≤ e−2α1t Ent1( f ). (100)

Proof. 1. We first bound the dynamical evolution of the variance in Eq. (99). We find by
simple calculation that ∂t Varσ (gt ) = −2Ê2(gt ). The inequality for the gap λ leads to the differential
inequality ∂ tVarσ (gt) ≤ − 2λVarσ (gt), which upon integration gives the desired bound.

2. The derivation of Eq. (100) follows by similar arguments, we have to show that ∂t Ent1( ft )
= −2Ê1( f ) is obtained as the derivative of the entropy functional. To see this, first note that
∂t tr [�σ ( ft )] = tr [L(�σ ( ft ))] = 0, since L∗(1) = 0. Hence, we obtain for the derivative:

d

dt
Ent1( ft ) = tr

[
�σ (L̂( ft ))(log(�σ ( ft )) − log(σ ))

] + tr

[
�σ ( ft )

(
d

dt
log(�σ ( ft ))

)]
. (101)

It is possible to write the logarithm of a matrix by making use of the integral representation
log(A) = ∫ ∞

0
1
λ

− 1
λ+A dλ. It follows that

d

dt
log(�σ ( ft )) =

∫ ∞

0

1

λ + �σ ( ft )

(
d

dt
�σ ( ft )

)
1

λ + �σ ( ft )
dλ. (102)

Hence, we obtain

tr

[
�σ ( ft )

(
d

dt
log(�σ ( ft ))

)]
=

∫ ∞

0
tr

[
�σ ( ft )

(λ + �σ ( ft ))2

(
d

dt
�σ ( ft )

)]
dλ (103)

= d

dt
tr [�σ ( ft )] = 0,

which follows by direct integration in the eigenbasis of �σ (ft). By comparison with the definition
of Ê1( ft ), we therefore have that ∂t Ent1( ft ) = −2Ê1( ft ). This yields, due to the Log-Sobolev in-
equality with constant α1, the desired bound by integrating the differential inequality ∂ tEnt1(ft)
≤ − 2α1Ent1(ft). �

This lemma implies the desired mixing time bounds for the trace norm distance via the relative
entropy and the χ2-divergence. Also note, that we did not make use of the fact that λ corresponds to
the second largest eigenvalue of L. This fact will not be true in general and only holds for reversible
channels as we have already mentioned earlier. We have that, in general, the spectrum of L may
actually be complex. However, it can be seen that λ can always be understood as the second largest
eigenvalue of an appropriately weighted symmetrization.18

Theorem 22. Let L : Md → Md be a primitive Liouvillian with stationary state σ . Then the
following trace norm convergence bounds hold:

1. χ2 bound: If the inequality λVarσ (g) ≤ Ê2(g) holds for all g ∈ Ad , we have

‖ρt − σ‖tr ≤
√

1/σmine−λt . (104)

2. Log-Sobolev bound: Furthermore, if the LS1 inequality α1 Ent1( f ) ≤ Ê1( f ) holds for all
f ∈ A+

d , then

‖ρt − σ‖tr ≤
√

2 log(1/σmin)e−α1t , (105)

Where σ min denotes the smallest eigenvalue of the stationary state σ .

Proof. The theorem is a direct consequence of Lemma 21 and the bounds on the trace
norm, in terms of the relative entropy and the χ2-divergence. Recall that (cf. Lemma 5), we
have Ent1(�−1

σ (ρ)) = D(ρ‖σ ) and Varσ (�−1
σ (ρ)) = χ2(ρ, σ ). Hence, Lemma 21 implies that
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D(ρt‖σ ) ≤ e−2α1t D(ρ0‖σ ) as well as χ2(ρ t, σ ) ≤ e− 2λtχ2(ρ0, σ ). With the bounds in Eq. (95), we
now have

‖ρt − σ‖tr ≤
{√

χ2(ρ0, σ ) e−λt

√
2 D(ρ0‖σ ) e−α1t

. (106)

Observe that both D(ρ0‖σ ) and χ2(ρ0, σ ) become maximal for a full rank state σ , if ρ0 corresponds
to a rank one projector onto the eigenstate of σ with the smallest eigenvalue, which leaves us with
the stated bounds. �

Note, that we have at no point made use of the fact that the generator of the semigroup is
reversible or even Lp-regular. The above results hold in general without further conditions on the
Liouvillian L apart from the assumption of primitivity, which ensures that the stationary state σ has
full rank. We have already mentioned in the Introduction that the logarithmic Sobolev inequality
which corresponds to α1 is not the common inequality considered in the majority of classical mixing
time results,3, 4, 38 but was only somewhat recently introduced20 to derive mixing time bounds for
classical finite Markovian processes.

The partial ordering obeyed by the Log-Sobolev constants of Lp-regular Liouvillians was
articulated in Proposition 13, in particular, α2 ≤ 2α1. In many practical applications, it seems to be
more challenging to find lower bounds to the constant α1 than to the constant α2, since the Dirichlet
form Ê1( f ) is more complicated than the standard Dirichlet form Ê2( f ). This is why for classical
Markov processes mostly the LS2 inequality is used to derive mixing time bounds. For the class
of Lp regular generators we are in fact able to reproduce the well-known classical result3 with the
constant α2.

Lemma 23. If the Liouvillian L : Md → Md is weakly Lp-regular and the LS2 inequality
α2 Ent2( f ) ≤ Ê2( f ) holds for all f ∈ A+

d , we have that

‖ρt − σ‖tr ≤
√

2 log (1/σmin) e−α2t/2. (107)

Furthermore, if the Liouvilian L is strongly Lp regular, the bound can be improved to

‖ρt − σ‖tr ≤
√

2 log (1/σmin) e−α2t . (108)

Proof. This bound follows immediately from Theorem 22 and the partial ordering of the Log-
Sobolev inequalities in Proposition 13. �

Remark 1: We can provide good estimates of σ min for the two situations which are of par-
ticular interest to us: primitive unital semigroups and thermal semigroups. For primitive unital
semigroups of a d-dimensional system, σ = 1/d, and hence 1/σ min = d. For thermal semigroups of
an N-qubit system with Hamiltonian H at temperature β, the stationary state will be given by σβ

= e− βH/tr[e−βH]. It is a straightforward calculation to see that we have the bound:

1

σmin
≤ deβ||H ||∞ . (109)

Provided that the Hamiltonian is locally bounded and has only a polynomial number of terms, we
get that for some positive constant c ∈ R, σ−1

min ≤ decN . For an N-qubit system we have that d = 2N,
which yields a scaling of σ−1

min ≤ O(d).
This implies that for both of our cases of interest, the pre-factor in the Log-Sobolev bound

grows at most as log (d). Hence, its contribution to the mixing time is of the order of log (log (d)).
This indicates that the Log-Sobolev constant gives a very strong estimate on the mixing time.

Remark 2: The LS1 inequality has the nice property that it allows for a convenient physical
interpretation in terms of non-equilibrium thermodynamics. Consider a thermal Liouvillian Lβ with
stationary state σβ = Z− 1exp ( − βH). If we compute the relative entropy of the evolved state ρ t
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with respect to the stationary state σβ , we get

D(ρt‖σβ) = β
(
Ht − T St − Fβ

)
, (110)

where we have denoted the Helmholtz Free-energy by Fβ = − kBT log (Z) with β − 1 = kBT and the
energy as well as the von Neumann entropy by Ht = tr[Hρ t] and St = − kBtr[ρ t log (ρ t)], respectively.
For a thermal stationary state, the relative entropy is nothing but the difference between the thermal
Free-energy and the non-equilibrium Free-energy. Furthermore, upon recalling that ρσ

t = �−1
σ (ρt ),

the LS1 Dirichlet form E1(ρσ
t ) corresponds to the entropy production rate � of non-equilibrium

thermodynamics:36, 39

2kBE1(ρσ
t ) ≡ � = d

dt
St + �. (111)

Here, � = kB tr
[
L(ρt ) log(σ )

]
is often referred to as the entropy flux and we have that entropy

production rate is given by d
dt St = −kB tr

[
L(ρt ) log(ρt )

]
. The rate � can be interpreted as the

amount of entropy which is being generated due to the dissipative dynamics which drives the system
towards equilibrium. The entropy flux � = T −1 d

dt Ht is related to the energy which is dissipated
to the environment. The LS1 inequality can in this setting be interpreted as a way of bounding the
difference between the free-energies by the entropy production rate. We have that

α1 = inf
ρ

∂t log
(
F(ρt ) − Fβ

)
, (112)

where we have that F(ρ t) = Ht − TSt as defined above. In other words, for thermal maps, the
LS1 constant can be interpreted as the minimal normalized rate of change of the free energy in the
system.

V. APPLICATIONS

In this section we show a number of applications of the abstract results presented in Sec. IV. We
will only consider examples where Lp regularity has been shown to hold (i.e., unital and thermal
semigroups).

A. The depolarizing channel

To start with, we give an exact expression for the Log-Sobolev constant α2 of the depolarizing
semigroup. This is one of the very few cases where it is possible to get an exact explicit expression.

The generator of the depolarizing semigroup is given by

L( f ) = γ (1/dtr [ f ] − f ), (113)

for any f ∈ Ad . The corresponding semigroup is easily seen to be

Tt ( f ) = (1 − ε)1/dtr [ f ] + ε f, (114)

where ε = e− tγ .

Theorem 24. Let L : Md → Md be the generator of the completely depolarizing semigroup,
i.e., L( f ) = γ (tr [ f ] 1/d − f ) for all f ∈ Ad . Then its LS2 constant is given by

α2 = 2γ (1 − 2/d)

log (d − 1)
. (115)

Proof. We show that the result can be obtained by reduction to a lemma proved in Ref. 3. Recall
that

α2 = inf

{ E2( f )

Ent2( f )
| Ent2( f ) �= 0, f ∈ A+

d

}
(116)
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Now, noting that the stationary state is 1/d, we can write the numerator and denominator explicitly
as

α2 ≤ tr [ f ( f − tr [ f ] 1/d)] γ

tr
[

f ( f log( f ) − f log(|| f ||2))
] . (117)

Now, consider an f ∈ A+
d which saturates Eq. (117), then given its spectral decomposition

f = ∑
j fj| j〉〈j |, we get that

f j log( f j ) − f j log(|| f ||2) − γ

α2
( f j − tr [ f ] /d) = 0, (118)

for all j, as both terms in the sum must be positive. From this point on, the proof mirrors the proof of
Theorem A1 in Ref. 3. In particular, it was shown in Ref. 3 that the {f}i which saturates Eq. (118)
is not the uniform distribution.

Now given that t → t log t is a convex function, Eq. (118) can only be satisfied for at most two
distinct values of fj, call them x and y. We know that f cannot be proportional to 1, so fj = x for at
least one j and fj = y also for at least one j. Write dθ for the number of fj which are equal to x, and
note that θ ∈ [1/d, 1/2]. Then, by plugging back into Eq. (117), we get

α2 = min
θ,x,y

2γ θ (1 − θ )(x − y)2

θx2 log(x2) + (1 − θ )y2 log(y2) − (θx2 + (1 − θ )y2) log(θx2 + (1 − θ )y2)
. (119)

This equation can be seen to be exactly the same as the one resulting from the Log-Sobolev
constant of a classical projective semigroup with stationary state π = θ | 0〉〈0 | + (1 − θ )| 1〉〈1 | on
a commutative Lp space. That problem was solved in Ref. 3, where it was shown that

α2 = min
θ∈[1/d,1/2]

2γ (1 − 2θ )

log (1 − θ )θ
. (120)

The above minimum is easily seen to be reached for θ = 1/d, thus completing the proof. �

Observe that by l’Hôpitale’s rule, we get limd→2
2(1−2/d)γ
log(d−1) = γ .

The next natural question which might arise is whether one can evaluate the Log-Sobolev
constant of a tensor product of depolarizing semigroups. The Log-Sobolev constant of a classical
tensor product semigroup is the minimum of the LS constant of the individual semigroups. In other
words, for two classical semigroups Pt and Qt, with Log-Sobolev constants α2(Pt) and α2(Qt), we
get3

α2(Pt ⊗ Qt ) = min{α2(Pt ), α2(Qt )}. (121)

This however is not guaranteed to be true in the quantum setting because of the possibility for
entangled inputs. However, it turns out that it is possible to show this for qubit depolarizing maps,
as illustrated in the following lemma, which was first proved in Ref. 40. We reproduce their proof
here in the context of Log-Sobolev inequalities, as it illustrates the power of the hypercontractive
method.

Lemma 25. Let γ > 0, and consider the qubit depolarizing Liouvillian L( f ) = γ (tr [ f ] 1/2
− f ), with f ∈ A+

2 . Define the tensor summed Liouvillian on N qubits as

L(N ) = L ⊗ id ⊗ . . . ⊗ id + id ⊗ L ⊗ id ⊗ . . . ⊗ id + .. + id ⊗ . . . ⊗ id ⊗ L. (122)

Then,

α2(L(N )) = α2(L) = α1(L)= λ(L) = γ . (123)

Proof. This proof relies on certain relationships which were proved for Shatten p-norms, there-
fore we will specify the Shatten p-norms by omitting the σ subscript. For unital semigroups, the
Shatten p norm and the Lp norm are simply related as ||f||σ , p = d− 1/p||f||p, where f ∈ Ad and
σ = 1/d.
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The proof is obtained by induction in the number of tensor powers, and working in the hyper-
contractive picture. For simplicity of notation we will write T (N )

t ≡ etL(N )
.

We start by showing that the base case (N = 1) holds. By Theorems 24 and 15, we know
that the hypercontractive inequality holds with α2 ≡ α2(L)= λ(L) = γ for a single tensor power,
i.e., ||T (1)

t ( f )||p,σ ≤ || f ||2,σ for all f ∈ A2 and p ≤ 1 + e2tα2 . In terms of the Shatten norms this
yields ||Tt( f )||p ≤ 2− 1/2 + 1/p||f||2. Now assume that ||T (N−1)

t ( f )||p,σ ≤ || f ||2,σ for all f ∈ A2N−1

and p ≤ 1 + e2tα2 . We will show that the same holds true for N qubits as well.
For some a, b, c, d ∈ A2N−1 , define f ∈ A2N and g ∈ A2 as

f =
(

a + d b − ic

b + ic a − d

)
and g =

(
||a + εd||2,σ ε||b − ic||2,σ

ε||b + ic||2,σ ||a − εd||2,σ

)
, (124)

where ε = e− γ t.
A simple calculation shows that

T (N )
t ( f ) =

(
T (N−1)

t (a + εd) εT (N−1)
t (b − ic)

εT (N−1)
t (b + ic) T (N−1)

t (a − εd)

)
. (125)

Then, for p ≤ ε − 2 + 1,

||T (N )( f )||p
p,σ = 2−N ‖

(
T (N−1)

t (a + εd) εT (N−1)
t (b − ic)

εT (N−1)
t (b + ic) T (N−1)

t (a − εd)

)
‖p

p (126)

≤ 1

2
‖
(

||T (N−1)
t (a + εd)||2,σ ε||T (N−1)

t (b − ic)||2,σ

ε||T (N−1)
t (b + ic)||2,σ ||T (N−1)

t (a − εd)||2,σ

)
‖p

p (127)

≤ 1

2
||
(

||a + εd||2,σ ε||b − ic||2,σ

ε||b + ic||2,σ ||a − εd||2,σ

)
||p

p = ||g||p
p,σ , (128)

where the first inequality follows from a result shown in Ref. 41, and the second inequality follows
from hypercontractivity of T (N−1)

t (inductive hypothesis). To complete the proof, we want to show
that ||g||2, σ ≤ ||f||2, σ . For that, we will again use hypercontractivity. We define an h ∈ A2 such that
g = T (1)

t (h). Then, by hypercontractivity, ||g||p, σ ≤ ||h||2, σ , and finally we will show that ||h||2,σ

≤ ||f||2, σ .
It is not difficult to see that setting:

h11 = 1

2
((1 + ε−1)||a + εd||2,σ + (1 − ε−1)||a − εd||2,σ ), (129)

h12 = h21 = ||b − ic||2,σ , (130)

h22 = 1

2
((1 − ε−1)||a + εd||2,σ + (1 + ε−1)||a − εd||2,σ ), (131)

we get that g = T (1)
t (h).

An explicit expansion for ||h||22,σ gives

||h||22,σ = 2||b − ic||22,σ + (1 + ε−2)(||a||22,σ + ε2||d||22,σ ) + (1 − ε−2)||a + εd||2,σ ||a − εd||2,σ ,

(132)
while an explicit expansion for || f ||22,σ yields

|| f ||22,σ = (||a||22,σ + ||b||22,σ + ||c||22,σ + ||d||22,σ ). (133)
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Hence, in order to complete the proof, we only need to show

(1 + ε−2)(||a||22,σ + ε2||d||22,σ ) + (1 − ε−2)||a + εd||2,σ ||a − εd||2,σ ≤ 2(||a||22,σ + ||d||22,σ )
(134)

Noting that (1 − ε − 2)/2 is negative, it suffices to show

(||a||22,σ − ε2||d||22,σ ) ≤ ||a + εd||2,σ ||a − εd||2,σ , (135)

which follows by the matrix Cauchy-Schwarz inequality. �

To wrap up the discussion on the depolarizing semigroup, we pose a question which was raised
in Ref. 42: is it possible to increase the survival time of a codeword encoded in a system of N qubits
suffering local depolarizing noise (with rate γ ), by allowing for arbitrary, possibly time-dependent,
Hamiltonian control? In Ref. 42 it was shown that a survival time of order log N can be reached in this
manner by conveniently condensing the entropy into specified regions in phase space. Here we show
that the upper bound is a direct consequence of the fact that the Dirichlet form for a unital Liouvillian
in invariant under the addition of Hamiltonian generators. Indeed, let L′( f ) = L( f ) + i[H, f ] for
some Hamiltonian H′, then E ′

1( f ) = E1( f ) for any f ∈ Ad . This furthermore shows that the same
argument holds for any unital semigroup, hence extending the statement in Ref. 42 to any primitive
unital semigroup. This confirms the intuition that entropy can only be clustered into regions, but
cannot be eliminated for unital semigroups.

B. Quantum expanders

As a second example, we consider the convergence behavior of quantum D-regular and expander
graphs. There is a vast body of literature on classical expander graphs in the theoretical computer
science and combinatorics literature, as these families of graphs have a plethora of useful applications,
see Ref. 43 for a good review. The quantum analogue of this family of graphs has been introduced
by several authors, where explicit and implicit constructions have been suggested.44–46

A classical D-regular graph is a graph where each vertex is connected to exactly D other
vertices. A quantum D-regular channel is a quantum channel which can be written with exactly D
linearly independent Kraus operators. A family of expender graphs (where the dimension specifies
the elements in the family) is a set of D-regular graphs such that the spectral gap is asymptotically
independent of the dimension. A family of quantum expander channels is analogously a set of
D-regular channels such that the spectral gap of the channels is asymptotically independent of the
dimension. Expander graphs are often used as efficient randomness generators, where one considers
a random walk on the expander, and because of the constant spectral gap, the initial population
spreads evenly across the graph very rapidly.

The main theorem of this section shows that the Log-Sobolev constant can be qualitatively
different from the spectral gap, and provides a much more informative upper bound on the con-
vergence of quantum expanders. It is important to point out that quantum expanders are defined
as (time-) discrete channels, whereas the Log-Sobolev tools were developed for continuous time
semigroups. However, given a primitive quantum channel T : Md → Md we can define the Liou-
villian L = T − id and relate their spectra and mixing properties. This correspondence is outlined
in Lemma 28. We therefore define the Log-Sobolev constant of the channel T as the Log-Sobolev
constant of the associated Liovillian L = T − id.

Theorem 26. The Log-Sobolev constant ofL = T − id, where T : Md → Md is any D-regular
reversible unital channel satisfies:

α2 ≤ log D
4 + log log d

2 log 3d/4
. (136)

Proof. Given the reversible D-regular unital channel T, consider the lazy channel defined as
T̃ = 1

2 (id + T ). Associate to this lazy channel a lazy Liouvillian L̃ ≡ T̃ − id. For an initial pure
state ϕ, it is clear that the rank of the output state of a D-regular channel will be at most Dn after
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n iterations of the map. Let Pn be the projector onto the complement of the support of T̃ n(ϕ) (i.e.,
PnT̃ n(ϕ)Pn = 0). Then, given that tr[X] ≥ tr[PnXPn] for any X ∈ A+

d ,

χ2(T̃ n(ϕ), 1/d) = tr
[
(T̃ ◦ �−1/2(ϕ) − 1/

√
d)2

]
(137)

≥ tr
[

P(T̃ ◦ �−1/2(ϕ) − 1/
√

d)2 P
]

(138)

= tr [P] /d ≥ d − Dn

d
. (139)

This implies that χ2(T̃ n(ϕ), 1/d) ≥ 1/2 whenever Dn/d ≤ 3/4, or n ≤ log(3d/4)
log(D) . An upper bound

on the χ2 divergence can be obtained by combining Lemma 28 and Proposition 31 (proved later on
in this section). Indeed, Lemma 28 guarantees that we can upper bound the χ2 divergence of the
channel T̂ by the χ2 divergence of the semigroup with Liouvillian L̃ ≡ T̃ − id, while Proposition
31 guarantees that

χ2(T n(ϕ), 1/d) ≤ 1

2
(140)

when n ≥ 1
2α2

(log log(d) + 1). In deriving Eq. (140), we have also used that α2 ≤ λ, that α̃2 = 2α2,
and that 2 − log (2) ≤ 1. Finally, combining the upper and the lower bounds on the χ2 divergence
yields

α2 ≤ log D
4 + log log d

2 log 3d/4
(141)

and completes the proof. �

Note: This method cannot be used to bound the LS1 constant, as it crucially depends on
the correspondence between Log Sobolev inequalities and hypercontractivity in the proof of
Proposition 31.

Theorem 26 holds quite independently of the actual scaling of the spectral gap or of the Log
Sobolev constant. It simply gives an absolute upper bound on α2 in terms of the Kraus rank and of the
dimension for primitive reversible unital channels. This upper bound however becomes particularly
relevant in the context of expanders. It shows that for expanders, even though the spectral gap is
asymptotically independent of the dimension d, the LS2 constant will always decrease logarithmically
with the dimension. We corroborate this claim by providing a general lower bound on α2 in terms
of the spectral gap for unital semigroups.

Corollary 27. Let L : Md → Md be a primitive unital Liouvillian with spectral gap λ, then

α2 ≥ 2(1 − 2/d)λ

log (d − 1)
. (142)

Proof. Note that for Ldepol( f ) ≡ (tr [ f ] 1/d − f ), then for any f ∈ A we get that Varσ ( f )
= Edepol

2 ( f ). Hence, if E2( f ) is the Dirichlet form associated with L, then

2(1 − 2/d)

log (d − 1)
Ent2( f ) ≤ Edepol

2 ( f ) = Varσ ( f ) ≤ E2( f )/λ, (143)

where the first inequality is obtained from Theorem 24, and the last one follows from the variational
characterization of the spectral gap in Eq. (33). �

Thus, combining the two bounds, we get that for any primitive, reversible, and unital D-regular
Liouvillian L : Md → Md , with Log-Sobolev constant α2 and spectral gap λ:

2(1 − 2/d)λ

log (d − 1)
≤ α2 ≤ log D

4 + log log d

2 log 3d/4
. (144)
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In particular, Lemma 28 and the mixing time analysis in Sec. IV provide further evidence that
the mixing time of a quantum expander cannot in general terms be faster than O(log(d)). It is worth
mentioning that a very important class of expander channels, namely, random unitary channels46 are
unital and reversible.

The remainder of this section consists of the lemmas which were used in the proof of Theorem
26. We will first need a lemma relating the χ2 mixing of a channel T : Md → Md to that of its
associated semigroup L ≡ (T − id).

Lemma 28. Let T : Md → Md be a primitive reversible quantum channel with stationary
state σ , and let Tt be the semigroup with generator L = T − id. Moreover, suppose that T (and
consequently Tt) is lazy, i.e., there exists a quantum channel S such that T = 1

2 (id + S). Then, for
any positive integer n, and any input state ρ ∈ Sd ,

χ2(T ∗n(ρ), σ ) ≤ χ2(T ∗
n (ρ), σ ), (145)

where Tn refers to the continuous time semigroup and Tn refers to discrete powers of the quantum
channel.

Proof. Given that T is reversible, its spectrum is real and we can define the similarity transform
T̃ ≡ �

1/2
σ ◦ T ◦ �

−1/2
σ . This map is Hermitian and possesses an orthonormal basis of eigen-operators,

write them as {Ek}. Note that both maps have the same spectrum, as they are related by a similarity
transformation. Primitivity guarantees that the second largest eigenvalue is strictly smaller than 1,
and laziness ensures that the spectrum is non-negative. We therefore can write the eigenvalues {β i}
of T̃ in decreasing order as 1 = β0 > β1 ≥ . . . ≥ βd2−1 ≥ 0. We similarly write the eigenvalues {λi}
of L̃ = γ (T̃ − id) as λi ≡ β i − 1 for i = 1, . . . , d2 − 1. Under these assumptions, T̃ can be written
as

T̃ (ρ) =
d2−1∑
k=0

βk tr
[

E†
k ρ

]
Ek, (146)

where E0 = √
σ . Then

χ2(T ∗n(ρ), σ ) = tr
[
(T ∗n(ρ) − σ )�−1

σ (T ∗n(ρ) − σ )
]

(147)

= tr
[|T̃ n ◦ �−1/2

σ (ρ) − √
σ |2] (148)

= tr

⎡
⎣|

d2−1∑
k=1

βn
k tr

[
E†

k �
−1/2
σ (ρ)

]
Ek |2

⎤
⎦ . (149)

Now, note that the coefficients in Eq. (149) are all positive. Then, since log (1 + x) ≤ x for all
x ∈ [0, 1], it follows that

βi = elog (1+λi ) ≤ eλi . (150)

Thus,

χ2(T ∗n(ρ), σ ) ≤ tr

⎡
⎣|

d2−1∑
k=1

enλk tr
[

E†
k �

−1/2
σ (ρ)

]
Ek |2

⎤
⎦ = χ2(T ∗

n (ρ), σ ). (151)

�

In order to simplify the presentation of what follows, we introduce the notation of p → q norms.
We will write ||Tt||(q, σ ) → (p, σ ) ≤ 1 to mean that ||Tt( f )||p, σ ≤ ||f||q, σ for all f ∈ Ad . We additionally
introduce two lemmas, in order to clarify the proof of the next theorem.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.45.66.177 On: Wed, 29 Jan 2014 11:40:10



052202-27 M. J. Kastoryano and K. Temme J. Math. Phys. 54, 052202 (2013)

Lemma 29. Let T : Md → Md be a primitive quantum channel with stationary state σ ∈ S+
d ,

then

||T ||(p,σ )→(q,σ ) ≤ 1 iff. ||T̂||(q′,σ )→(p′,σ ) ≤ 1, (152)

where p′, q′ are the Hölder duals of p, q, and T̂ = �−1
σ ◦ T ∗ ◦ �σ .

Proof. The proof is a straightforward consequence of the duality of Lp norms (Lemma 1.3).
Assume that ||T||(p, σ ) → (q, σ ) ≤ 1, then for any f ∈ Ad , ||T( f )||q, σ ≤ ||f||p, σ . Now let g ∈ Ad and
consider

||T̂ (g)||p′,σ = sup{〈 f, T̂ (g)
〉
σ

, || f ||p,σ , f ∈ Ad} (153)

= sup{〈T ( f ), g〉σ , || f ||p,σ , f ∈ Ad} (154)

= sup{〈T ( f ), g〉σ , ||T ( f )||p,σ , f ∈ Ad} (155)

≤ sup{〈h, g〉σ , ||h||q , h ∈ Ad} (156)

= || f ||q ′,σ . (157)

The proof of the other direction proceeds in exactly the same manner. �

Note: By a slight modification of the argument in Ref. 47, it can be shown that the supremum
in ||T( f )||q, σ ≤ ||f||p, σ is reached for some positive matrix f ∈ A+

d .

Lemma 30. Let L : Md → Md be a primitive Liouvillian with spectral gap λ, and let Tt be its
associated semigroup. Then,

||Tt − T∞||(2,σ )→(2,σ ) ≤ e−tλ, (158)

where T∞ = limt → ∞Tt.

Proof. We start by recalling the variational characterization of the spectral gap:

λ = min
f ∈Ad

{ E2( f )

Varσ ( f )
, Var( f ) �= 0

}
(159)

= min
f ∈Ad

{
E2( f ), || f ||2,σ = 1, tr [�σ ( f )] = 0

}
, (160)

where we have used that Varσ ( f ) = || f ||22,σ − tr [�σ ( f )]. Now, observe that for any f ∈ Ad , Varσ ( f )
and E2( f ) are invariant under the transformation f �→ f + c1with c ∈ R. Therefore, we can without
loss of generality assume that f ∈ A+

d . Then,

∂t ||(Tt − T∞)( f )||22,σ = −2E2(Tt ( f )) ≤ −2λVarσ (Tt ( f )) = −2λ||(Tt − T∞)( f )||22,σ . (161)

Thus,

||(Tt − T∞)( f )||22,σ ≤ e−2λt Varσ ( f ). (162)

Taking the supremum over f ∈ Ad such that ||f||2 = 1 and tr[�σ ( f )] = 0 then completes the
proof. �

We are now in a position to prove the main technical result of this section which is an inequality
involving the χ2-divergence for primitive Liouvillians.
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Proposition 31. Let L : Md → Md be a primitive Liouvillian with Log-Sobolev constant α2

and spectral gap λ, and let Tt be its associated semigroup. Let σ min denote the smallest eigenvalue
of σ . Then, for any c > 0 and t ≥ 1

2α2
(log log 1/σmin) + c

λ
,

χ2(T ∗
t (ρ), σ ) ≤ e2(1−c), (163)

for any state ρ ∈ Sd .

Proof. Let p(t) = 1 + e2α2t . By Theorem 15 we get hypercontractivity of the semigroup:
||Tt||(2, σ ) → (p(t), σ ) ≤ 1. Then by Lemma 29, we also get that ||T̂t ||(p′(t),σ )→(2,σ ) ≤ 1, where 1/p
+ 1/p′ = 1 and T̂t = �−1

σ T ∗
t �σ . Now, writing ρt+s ≡ T ∗

t+s(ρ), for any ρ ∈ Sd and positive reals s, t
> 0, we get√

χ2(ρt+s, σ ) =
√

tr
[
(ρt+s − σ )�−1

σ (ρt+s − σ )
]

(164)

= ||T̂t+s(�−1
σ (ρ)) − σ ||2,σ (165)

= ||(T̂t+s − T̂∞)(�−1
σ (ρ))||2,σ (166)

≤ ||T̂s(�−1
σ (ρ))||2,σ ||T̂t − T̂∞||(2,σ )→(2,σ ) (167)

≤ ||T̂s ||(p′(s),σ )→(2,σ )||�−1
σ (ρ)||p′(s),σ ||T̂t − T̂∞||(2,σ )→(2,σ ) (168)

≤ σ−1/p(s)
min e−tλ||T̂s ||(p′(s),σ )→(2,σ ) (169)

≤ σ−1/p(s)
min e−tλ, (170)

where the inequalities follow from hypercontractivity of Tt, Lemma 30, and properties of the Lq

norms (Lemma 1). Note in particular, that for a given t > 0, T̂t is a quantum channel, and that it has
the same spectrum as Tt.

Choosing s = 1
2α2

(log log 1/σmin), we get p(s) = 1 − log σ min . By noting that 1/p ≥ 1/(1 + p),
we get

χ2(T ∗
t (ρ), σ ) ≤ e1−λt , (171)

which completes the theorem. �

VI. OUTLOOK

In this paper, we have introduced the tools of logarithmic Sobolev inequalities for the analysis
of mixing times of quantum dynamical semigroups. We have identified the relevant Log-Sobolev
constants in the case of finite state spaces, and proved upper bounds in terms of the spectral
gap of the generator of the semigroup. We have recast the well-known equivalence between Log-
Sobolev inequalities and hypercontractivity in the finite non-commutative state space setting, and
have shown that the equivalence carries over essentially unchanged from the classical case if the
Liouvillian satisfies an Lp regularity condition. We show that unital and thermal (Davies generators)
Liouvillians satisfy such a condition.

Having worked out the abstract theory, we showed that it implies very strong bounds on the
mixing time of the semigroup, when the spectral gap and the Log-Sobolev constant are comparable.
In particular, the pre-factor associated with the mixing is exponentially smaller than the one obtained
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by a χ2 bound. We have explicitly calculated the Log-Sobolev constant for the depolarizing channel
of dimension d, and of a tensor product of qubit depolarizing channels. Finally, we have provided
upper and lower bounds on the Log-Sobolev constant of D-regular unital channels, and discussed
implications for quantum expanders. In particular, we showed that even though the gap of a random
unitary channel is asymptotically independent of dimension, its Log-Sobolev constant will decrease
as O(1/ log(d)).

To conclude, we briefly discuss potential further application of the framework introduced here,
as well as issues which have been left unresolved.

• We have to point out that we have to a large extent only introduced the formal setting of
Log-Sobolev inequalities, and that many relevant applications remain to be worked out. In the
classical setting, Log-Sobolev inequalities and hypercontractivity have been extremely useful
tools. One area where they have proved to be paramount is in analyzing the mixing properties
of spin systems on a lattice under Glauber dynamics. Several authors have been able to show
a number of very tight mixing results,4, 38 in particular relating spatial and temporal mixing
in a one-to-one fashion. It would be very desirable to generalize these results to the quantum
setting. More generally, a number of methods, including block renormalization transformations
and comparison theorems, have been developed in the classical setting in order to explicitly
calculate the LS2 constant for specific systems. It would be very important to generalize these
results to the quantum setting.

• There also remain a number of open questions in the abstract theory of quantum Log-Sobolev
inequalities. We mention two questions which we consider important to resolve. The first is
to settle Conjecture 19. On the one hand, it would be interesting to know whether there exist
semigroups which violate Lp regularity, as it would be a distinctly quantum signature in the
theory. Conversely, if the conjecture is true then the Log-Sobolev machinery can be used quite
generally, and one can expect that most of the classical mixing time tools can be inherited with
little modification. The second open question is to figure out whether the Log Sobolev constants
of a tensor power of semigroups are equal to the Log Sobolev constant of its components. This
problem can be rephrased in several different ways which could have relevance in quantum
information theory. It can, for instance, be related in a one-to-one manner to various forms of
multiplicativity of 2 → p norms, and as such, provides an important operational interpretation
for these quantities. As far as we know, this is an open question in operator space theory.
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