51 research outputs found

    Single Doses up to 800 mg of E-52862 Do Not Prolong the QTc Interval--A Retrospective Validation by Pharmacokinetic-Pharmacodynamic Modelling of Electrocardiography Data Utilising the Effects of a Meal on QTc to Demonstrate ECG Assay Sensitivity.

    Get PDF
    BACKGROUND: E-52862 is a Sigma-1 receptor antagonist (S1RA) currently under investigation as a potential analgesic medicine. We successfully applied a concentration-effect model retrospectively to a four-way crossover Phase I single ascending dose study and utilized the QTc shortening effects of a meal to demonstrate assay sensitivity by establishing the time course effects from baseline in all four periods, independently from any potential drug effects. METHODS: Thirty two healthy male and female subjects were included in four treatment periods to receive single ascending doses of 500 mg, 600 mg or 800 mg of E-52862 or placebo. PK was linear over the dose range investigated and doses up to 600 mg were well tolerated. The baseline electrocardiography (ECG) measurements on Day-1 were time-matched with ECG and pharmacokinetic (PK) samples on Day 1 (dosing day). RESULTS: In this conventional mean change to time-matched placebo analysis, the largest time-matched difference to placebo QTcI was 1.44 ms (90% CI: -4.04, 6.93 ms) for 500 mg; -0.39 ms (90% CI: -3.91, 3.13 ms) for 600 mg and 1.32 ms (90% CI: -1.89, 4.53 ms) for 800 mg of E-52862, thereby showing the absence of any QTc prolonging effect at the doses tested. In addition concentration-effect models, one based on the placebo corrected change from baseline and one for the change of QTcI from average baseline with time as fixed effect were fitted to the data confirming the results of the time course analysis. CONCLUSION: The sensitivity of this study to detect small changes in the QTc interval was confirmed by demonstrating a shortening of QTcF of -8.1 (90% CI: -10.4, -5.9) one hour and -7.2 (90% CI: -9.4, -5.0) three hours after a standardised meal. TRIAL REGISTRATION: EU Clinical Trials Register EudraCT 2010 020343 13

    The Cardiovascular Effects of a Meal: J-Tpeak and Tpeak -Tend Assessment and Further Insights Into the Physiological Effects.

    Get PDF
    Meal intake leads to a significant and prolonged increase in cardiac output to supply the splanchnic vasculature. A meal is associated with sympathetic activation of the cardiovascular system, and food ingestion is correlated with an increase in heart rate, an increase in cardiac stroke volume, and QTc interval shortening for up to 7 hours. Given the complexity of the system, one or several of many mechanisms could explain this observation. The shortening of the QTc interval was correlated with a rise of C-peptide following food ingestion, but the mechanisms by which C-peptide may be involved in the modulation of cardiac repolarization are still unknown. This shortening of the myocardial action potential caused by the ingestion of food was further investigated in the present study by measuring the QRS, J-Tpeak , and Tpeak -Tend intervals in search of further clues to better understand the underlying mechanisms. A retrospective analysis was conducted based on data collected in a formal thorough QT/QTc study in which 32 subjects received a carbohydrate-rich "continental" breakfast, moxifloxacin without food, and moxifloxacin with food. We assessed the effect of food on T-wave morphology using validated algorithms for measurement of J-Tpeak and Tpeak -Tend intervals. Our findings demonstrate that a standardized meal significantly shortened J-Tpeak for 4 hours after a meal and to a much lesser extent and shorter duration (up to 1 hour) prolonged the Tpeak -Tend and QRS intervals. This suggests that the QTc shortening occurs mainly during phase 2 of the cardiac action potential. As there was no corresponding effect on Tpeak -Tend beyond the first hour, we conclude that a meal does not interfere with the outward correcting potassium channels but possibly with Ca2+ currents. An effect on mainly Ca2+ aligns well with our understanding of physiology whereby an increase in stroke volume, as observed after a meal, is associated with changes in Ca2+ cycling in and out of the sarcoplasmic reticulum during cardiac myocyte contraction

    Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort

    Get PDF
    Microbial exposures in homes of asthmatic adults have been rarely investigated; specificities and implications for respiratory health are not well understood. The objectives of this study were to investigate associations of microbial levels with asthma status, asthma symptoms, bronchial hyperresponsiveness (BHR), and atopy. Mattress dust samples of 199 asthmatics and 198 control subjects from 7 European countries participating in the European Community Respiratory Health Survey II study were analyzed for fungal and bacterial cell wall components and individual taxa. We observed trends for protective associations of higher levels of mostly bacterial markers. Increased levels of muramic acid, a cell wall component predominant in Gram-positive bacteria, tended to be inversely associated with asthma (OR's for different quartiles: II 0.71 [0.39-1.30], III 0.44 [0.23-0.82], and IV 0.60 [0.31-1.18] P for trend .07) and with asthma score (P for trend .06) and with atopy (P for trend .02). These associations were more pronounced in northern Europe. This study among adults across Europe supports a potential protective effect of Gram-positive bacteria in mattress dust and points out that this may be more pronounced in areas where microbial exposure levels are generally lower.Peer reviewe

    Concentration-QT modelling of the novel DHFR inhibitor P218 in healthy male volunteers.

    Get PDF
    AIMS: Given the increasing emergence of drug resistance in Plasmodium, new antimalarials are urgently required. P218 is an aminopyridine that inhibits dihydrofolate reductase being developed as a malaria chemoprotective drug. Assessing the effect of new compounds on cardiac intervals is key during early drug development to determine their cardiac safety. METHODS: This double-blind, randomized, placebo-controlled, parallel group study evaluated the effect of P218 on electrocardiographic parameters following oral administration of seven single-ascending doses up to 1000 mg in 56 healthy volunteers. Participants were randomized to treatment or placebo at a 3:1 ratio. P218 was administered in the fasted state with standardized lunch served 4 hours after dosing. 12-lead ECGs were recorded in triplicate at regular intervals on the test day, and at 48, 72, 120, 168, 192 and 240 hours thereafter. Blood samples for pharmacokinetic evaluations were collected at similar time points. Concentration-effect modelling was used to assess the effect of P218 and its metabolites on cardiac intervals. RESULTS: Concentration-effect analysis showed that P218 does not prolong the QTcF, J-Tpeak or TpTe interval at all doses tested. No significant changes in QRS or PR intervals were observed. Two-sided 90% confidence intervals of subinterval effects of P218 and its metabolites were consistently below the regulatory concern threshold for all doses. Study sensitivity was confirmed by significant shortening of QTcF after a meal. CONCLUSION: Oral administration of P218 up to 1000 mg does not prolong QTcF and does not significantly change QRS or PR intervals, suggesting low risk for drug-induced proarrhythmia

    Farm-like indoor microbiota in non-farm homes protects children from asthma development

    Get PDF
    Asthma prevalence has increased in epidemic proportions with urbanization, but growing up on traditional farms offers protection even today(1). The asthma-protective effect of farms appears to be associated with rich home dust microbiota(2,3), which could be used to model a health-promoting indoor microbiome. Here we show by modeling differences in house dust microbiota composition between farm and non-farm homes of Finnish birth cohorts(4) that in children who grow up in non-farm homes, asthma risk decreases as the similarity of their home bacterial microbiota composition to that of farm homes increases. The protective microbiota had a low abundance of Streptococcaceae relative to outdoor-associated bacterial taxa. The protective effect was independent of richness and total bacterial load and was associated with reduced proinflammatory cytokine responses against bacterial cell wall components ex vivo. We were able to reproduce these findings in a study among rural German children(2) and showed that children living in German non-farm homes with an indoor microbiota more similar to Finnish farm homes have decreased asthma risk. The indoor dust microbiota composition appears to be a definable, reproducible predictor of asthma risk and a potential modifiable target for asthma prevention.Peer reviewe

    Microbiota of the indoor environment: a meta-analysis

    Full text link
    BACKGROUND: As modern humans, we spend the majority of our time in indoor environments. Consequently, environmental exposure to microorganisms has important implications for human health, and a better understanding of the ecological drivers and processes that impact indoor microbial assemblages will be key for expanding our knowledge of the built environment. In the present investigation, we combined recent studies examining the microbiota of the built environment in order to identify unifying community patterns and the relative importance of indoor environmental factors. Ultimately, the present meta-analysis focused on studies of bacteria and archaea due to the limited number of high-throughput fungal studies from the indoor environment. We combined 16S ribosomal RNA (rRNA) gene datasets from 16 surveys of indoor environments conducted worldwide, additionally including 7 other studies representing putative environmental sources of microbial taxa (outdoor air, soil, and the human body). RESULTS: Combined analysis of subsets of studies that shared specific experimental protocols or indoor habitats revealed community patterns indicative of consistent source environments and environmental filtering. Additionally, we were able to identify several consistent sources for indoor microorganisms, particularly outdoor air and skin, mirroring what has been shown in individual studies. Technical variation across studies had a strong effect on comparisons of microbial community assemblages, with differences in experimental protocols limiting our ability to extensively explore the importance of, for example, sampling locality, building function and use, or environmental substrate in structuring indoor microbial communities. CONCLUSIONS: We present a snapshot of an important scientific field in its early stages, where studies have tended to focus on heavy sampling in a few geographic areas. From the practical perspective, this endeavor reinforces the importance of negative “kit” controls in microbiome studies. From the perspective of understanding mechanistic processes in the built environment, this meta-analysis confirms that broad factors, such as geography and building type, structure indoor microbes. However, this exercise suggests that individual studies with common sampling techniques may be more appropriate to explore the relative importance of subtle indoor environmental factors on the indoor microbiome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40168-015-0108-3) contains supplementary material, which is available to authorized users

    Diurnal Profile of the QTc Interval Following Moxifloxacin Administration.

    No full text
    Understanding the physiological fluctuations in the corrected QT (QTc) interval is important to accurately interpret the variations in drug-induced prolongation. The present study aimed to define the time course of the effect of moxifloxacin on the QT interval to understand the duration of the responses to moxifloxacin. This retrospective analysis was performed on data taken from a thorough QT 4-way crossover study with 40 subjects. Each period consisted of a baseline electrocardiogram (ECG) day (day -1) and a treatment day (day 1). On both days, ECGs were recorded simultaneously using 2 different systems operating in parallel: a bedside ECG and a continuous Holter recording. The subjects were randomized to 1 of 4 treatments: 5 mg and 40 mg of intravenous amisulpride, a single oral dose of moxifloxacin (400 mg), or placebo. Standardized meals, identical in all 4 periods, with similar nutritional value were served. Bedside ECG results confirmed that the moxifloxacin peak effect was delayed in the fed state and showed that the Fridericia corrected QT prolongation induced by moxifloxacin persisted until the end of the 24-hour measurement period. The use of continuous Holter monitoring provided further insight, as it revealed that the moxifloxacin effect on QTc was influenced by diurnal and nocturnal environmental factors, and hysteresis effects were noticeable. The findings suggested that moxifloxacin prolongs QTc beyond its elimination from the blood circulation. This is of relevance to current concentration-effect modeling approaches, which presume the absence of hysteresis effects
    corecore