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ABSTRACT 

Asthma prevalence has increased in epidemic proportions with urbanization, but growing up 

on traditional farms offers protection even today.
1
 The asthma-protective effect in farms 

appears to be associated with rich home dust microbiota,
2,3

 which could be used to model a 

health-promoting indoor microbiome. Here we show by modelling differences in house dust 

microbiota composition between farm and non-farm homes of Finnish birth cohorts
4
 that in 

children who grow up in non-farm homes asthma risk decreases as the similarity of their 

home bacterial microbiota composition to that of farm homes increases. The protective 

microbiota had a low abundance of Streptococcaceae relative to outdoor-associated bacterial 

taxa. The protective effect was independent of richness and total bacterial load and was 

associated with reduced proinflammatory cytokine responses against bacterial cell wall 

components ex vivo. We were able to reproduce these findings in a study among rural 

German children
2
 and showed that children living in German non-farm homes with an indoor 

microbiota more similar to Finnish farm homes have decreased asthma risk. The indoor dust 

microbiota composition appears as a definable, reproducible predictor of asthma risk and a 

potential modifiable target for asthma prevention.  

 

MAIN TEXT 

From ancient times, humans have adapted to rich microbial exposures in early life. Changes in these 

exposures in modern urbanized environments may drive the epidemic increases in asthma and 

allergies.
5,6

 Many studies describe and identify protective microbial exposures but with 

heterogeneity in the specific microbial signals. Thus microbial exposures that could be exploited for 

preventive interventions remain unidentified. Here, we tested whether it is possible to circumvent 

this issue with an anchor-based method, drawing on the well-characterized asthma-protective effect 

of growing up on animal farms that appears associated with their particular indoor dust microbiota 

composition.
2,3

 If the indoor microbiota in farm homes causally protects from asthma, as suggested 

by experimental data,
3,7,8

 similar microbiota in non-farm homes should also have a protective effect 

despite the different surrounding environment and life-style. 

We characterized the indoor microbiota from living-room floor dust collected from the homes of 

Finnish birth cohorts, LUKAS1 and LUKAS2,
4,9

 at the index child age of 2 months. At this age 

infants who crawl are constantly exposed to floor dust via the respiratory tract, skin and mouth.
10,11

 

The characteristics of the farm home microbiota were defined within LUKAS1, which includes only 
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rural homes, half of which are on farms with livestock. LUKAS2 is a random cohort of mostly 

suburban children.  

The microbial composition in farm homes was clearly distinct from that in non-farm homes (Figure 

1). The farm home dust microbiota was characterized by high bacterial richness and low-abundance 

cattle-associated microbes that were typically absent from the non-farm homes such as members of 

the Bacteroidales, Clostridiales and Lactobacillales orders, and rumen-associated archaea of the 

Methanobrevibacter genus (Figure 1, Extended Data Figure 1 and 2, Supplementary Table 1a and 

Supplementary Table 2).
12

 Several taxa within the Actinomycetales order were also more abundant 

in the farm than non-farm homes. In contrast, non-farm homes had higher proportions of human-

associated bacteria, including members of the Streptococcaceae family and Staphylococcus genus 

(Extended Data Figure 2, Supplementary Table 1b). Several differences were also seen in the 

relative abundance of specific fungal taxa, but fungal richness did not differ significantly between 

farm and rural non-farm homes (Figure 1, Extended Data Figures 1 and 3, Supplementary Table 3).  

We then modelled the farm home microbiota-like community composition in LUKAS1. Separate 

models were built for the farm-like bacterial/archaeal presence-absence, bacterial/archaeal relative 

abundance, fungal presence-absence and fungal relative abundance. The coefficients from these 

models were then applied to data of LUKAS2 non-farm homes.  

The bacterial/archaeal presence-absence patterns were very different between farm and non-farm 

homes (Figure 1). Accordingly, the probability of farm-like presence/absence pattern in a non-farm 

home was very low, and was not associated with asthma risk among the LUKAS2 non-farm 

children (Supplementary Table 4). Farm-like fungal composition also had no association with 

asthma risk (Figure 2, Supplementary Table 4). In contrast, farm-like relative abundance of 

bacteria/archaea at age 2 months was associated with decreased risk of asthma development by 6 

years of age (Figure 2). The association reached statistical significance also with active asthma at 

age 6 years when analyzed in a pooled sample of LUKAS1 and LUKAS2 (referred to as LUKAS 

from here onwards) non-farm children (Supplementary Table 4). The association between the farm-

like relative abundance of bacteria/archaea and asthma was similar between children living or not 

living on farms, as indicated by non-significant interaction term (p>0.6) and nearly equal odds ratio 

estimates in stratified analysis (Supplementary Table 4). However, in farms asthma was rare (N=10) 

and probably due to low statistical power the protective effect was not significant (except with 

dichotomous probability variable; p=0.02). 

We named the probability variable based on the bacterial/archaeal relative abundance data FaRMI 

(Farm home Resembling Microbiota Index). Notable feature of FaRMI was its moderate 
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classification accuracy in the training set (i.e. LUKAS1) (Extended Data Figure 4), which allows 

detection of farm-like features also in non-farm homes. From LUKAS farm homes 75.9% (88/116) 

and non-farm homes 32.7% (91/278) had more farm than rural non-farm like microbiota based on 

FaRMI ≥ 0.5. The association between FaRMI and asthma in non-farm children was independent of 

markers of microbial exposure previously linked with reduced risk of asthma, including bacterial 

richness and total bacterial and endotoxin load (Supplementary Table 5).
2,13,14,7

 This suggests that 

these general markers may be only proxies of more specific microbial composition such as 

described by FaRMI.
15

 A minor part (17%) of the protective effect associated with FaRMI seemed 

to be explained by muramic acid concentration in dust which could indicate the importance of 

bacterial cell wall structures. Muramic acid is a cell wall component characteristic (but not limited) 

to Gram-positive bacteria and its indoor levels were recently associated with asthma protection also 

in adults.
16

  

Variables associated with increased FaRMI in non-farm homes included walking inside with shoes 

worn outdoors, which may reflect transfer of soil; presence of two or more older siblings; elevated 

indoor moisture; and increased age of the house (Supplementary Table 6). However, the asthma-

protective association of FaRMI in non-farm homes was independent of these determinants, which 

indicates the importance of the microbial exposure over the environmental and lifestyle factors 

(Supplementary Table 5). Source tracking analysis confirmed that FaRMI was positively correlated 

with bacterial/archaeal OTUs of soil origin (Extended Data Figure 2). The beneficial influence of 

soil microbe exposure on asthma risk is supported by a recent study in mice.
17

 

To test the reproducibility of the association between farm-like bacterial/archaeal relative 

abundance and asthma, we first tested the reproducibility using alternative, data reduction 

independent, methodological approach. For this purpose we trained a random decision forest in 

LUKAS1 and applied it to LUKAS2 non-farmers. Compared to our original approach, this is more 

specific approach, and does not take into account phylogenetic similarity and thus is, by default, 

less likely to detect farm-like features in non-farm homes. Nonetheless, the analysis supported the 

concept as asthma protective trend (p<0.1) of farm-like features in non-farm home microbiota were 

also noted by this approach (Supplementary tables 7 and 8).  

We then tested the reproducibility of the association between FaRMI and asthma in another study 

population. For this purpose we applied our approach to data from the cross-sectional, German 

study among rural children; GABRIELA.
18

 In GABRIELA, home indoor microbiota was 

characterized from mattress dust (N=1031) and animal shed dust microbiota from a subsample of 

farms (N=50). The microbial community membership structure in the GABRIELA mattress dust 
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samples was clearly distinct from the LUKAS floor dust samples, as would be expected due to the 

different sample types,
19

 geographical location,
20,21

 and other study-specific differences.
20

 However, 

the influence of farming on the home indoor microbiota was similar, characterized in both studies 

by clustering closer to the GABRIELA animal shed dust samples (Figure 3, Supplementary Table 

9).  

In order to replicate our results independently of the LUKAS1 beta-diversity matrix, we built a 

linear model for FaRMI with relative abundance of bacterial/archaeal taxa in LUKAS1 and applied 

it to GABRIELA data (Supplementary Table 10a). This reproduced the asthma-protective effect of 

FaRMI in GABRIELA non-farm children (Figure 3, Supplementary Table 11). Based on FaRMI ≥ 

0.5, the microbiota in GABRIELA homes resembled more that in LUKAS1 farm than non-farm 

homes in 60.4% (241/399) of farm homesand in 36.8% (123/334) or 20.5% (61/298) of non-farm 

homes depeding whether the children were regularly exposed to farms or not, respectively. This 

replication demonstrates that FaRMI as a model of the asthma-protective indoor microbiota 

composition, is not limited to a single geographical location, population or indoor dust sample type.  

We then used the FaRMI-approach to model GABRIELA farmhouse-like microbiota 

(Supplementary Table 10b). The GABRIELA farm-house-like relative abundance pattern 

(FaRMIGABRIELA) tended to be associated with lower asthma risk in GABRIELA and LUKAS non-

farm children (Figure 3, Supplementary Table 11), which indicates that the FaRMI-approach is not 

limited to LUKAS1 as the anchor population. Common to both LUKAS1- and GABRIELA-based 

models was a negative association of FaRMI with the abundance of taxa in the Streptococcaceae 

family and positive associations with Sphingobacteriia and Alphaproteobacteria classes and 

Cyanobacteria phylum, which together explained over 60% of the total variance in both models 

(Figure 3, Extended Data Figure 5).  

Early-life microbial exposures,
15

 and living on the farm,
1
 may protect from atopic sensitization, 

which is a risk factor for asthma. The association between FaRMI and asthma was, however, 

independent of atopic sensitization among LUKAS non-farm children (Supplementary Tables 5 and 

12). Similar observation has been previously made in relation to microbial richness in farm homes.
2
 

FaRMI at 2 months had some but no consistent association with total cytokine production capacity 

of blood leukocytes at 1 and 6 years, as determined by ex vivo mitogenic stimulation (Table 1, 

Extended Data Figure 6). Instead, high FaRMI was associated with suppression of the bacterial cell 

wall component induced secretion of type 1 immunity associated cytokines including interferon-γ, 

interleukin (IL)-1β, IL-6 and IL-12. This indicates that the farm home –like microbiota may 

improve tolerance to microbial exposures; similarly as high early-life indoor endotoxin exposure 
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may lead into endotoxin tolerance.
14

 Based on animal models, endotoxin tolerance may inhibit also 

allergen-induced airway inflammation.
22,23

 This hypothesis also parallels the findings on Amish and 

Hutterite farm children, known for low and high asthma prevalence, respectively. The Amish 

children appear to have higher proportion of immunosuppressive monocytes than the Hutterite 

children, and the dust from the Amish but not Hutterite homes inhibited ovalbumin-induced 

broncho-alveolar eosinophilia in mice.
7
 A higher proportion of immunosuppressive monocytes 

could also explain the cytokine pattern associated with high FaRMI but that could not be assessed 

with data available. Instead, we found in exploratory analyses a strong positive correlation between 

FaRMI at 2 months and immunoglobulin-like transcript (ILT) 4 expression
24

 on peripheral blood 

plasmacytoid dendritic cells of non-asthmatic LUKAS1 non-farm children (pDC, rho=0.64; 

p=0.0015; n=26) at 6 years. This correlation did not exist within LUKAS1 children who were 

diagnosed with asthma by 6 years (rho=-0.09; p=0.80; n=15, Extended Data Figure 7). No 

correlations were seen between FaRMI and ILT4 expression on myeloid DC (mDC) or ILT3 

expression on mDC or pDC (data not shown). ILTs are known inhibitory receptors and markers of 

tolerogenic DCs.
25

 pDCs are potential gate keepers that could direct immune response against 

harmless environmental antigens away from pro-asthmatic inflammatory responses such as airway 

eosinophilia.
26

  

The route of exposure and mechanisms through which bacteria might mediate the immune 

suppressive effects and asthma protection require further research. We hypothesize that a key 

feature is the high relative abundance of environmental bacteria (including those of animal origin) 

relative to human associated bacteria. The human associated bacteria may be  more likely to 

colonize, invade and infect us and thus release more proinflammatory danger signals than the 

environmental bacteria.
27

 This potential was visible in the predicted abundance of genes negatively 

associated with FaRMI (Supplementary Table 13).
28-35

 In previous studies Streptococcus, Moraxella 

and Haemophilus genera that include common opportunistic respiratory pathogens have been 

associated with increased risk for asthma when abundant in home dust or colonizing the airways 

early in life.
7,36,37

 These genera were also more abundant in the non-farm than farm homes, but did 

not seem to contribute considerably to FaRMI (Supplementary Table 10a). Unlike with asthma-

predisposing taxa, there seems to be very little overlap between the different studies in low-asthma-

risk associated indoor taxa.2,7,15,37 
They may still share common beneficial properties, e.g. similar 

cell wall structures or functions, but it is also possible that the beneficial associations merely reflect 

lack of predisposing features and the relative abundance of these taxa compared to the potentially 

predisposing microbes. The lack of consistency could also indicate that the specific microbes are 

only proxies for less specific microbiota characteristics, such as richness or total load, or of 

environmental determinants, but this is not supported by our data.  
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The major strengths of our study are the prospective design, low dropout rate, long follow-up, 

adjustments for confounders, sample size, data on immunological responsiveness and replicability. 

Another advantage was the use of the anchor-based approach, which allowed us to study the health 

effects associated with microbiota typical to a protective environment (farming) independently of 

that environment. A limitation is that an observational study cannot establish causality, which needs 

to be established by an interventional study. Further studies, such as metagenomic, metabolomic 

and cell wall chemistry assessments, are needed to define the key features of asthma-protective 

microbial exposure. Comparing the relevance of fungal and bacterial exposures was limited by the 

modeling-associated differences and mechanistic studies to systemic immunity, which may differ 

from that in airways.  

In conclusion, while the asthma-protective effect of farming is intriguing, it has little practical 

relevance unless the protective effect can be functionally transferred to non-farming environments. 

We have taken the ‘farm effect’ outside of farms by showing that compositionally similar indoor 

dust bacterial/archaeal microbiota is also protective in non-farm environments. This is in agreement 

with our hypothesis and consistent with (but not proof of) the possibility that bacteria could be 

causal mediators of the asthma-protective farm effect. Our results warrant translational studies to 

confirm the causal relationship through indoor microbial exposure-modifying intervention that may 

also form a novel strategy for primary asthma prevention. With our robust and straightforward 

approach for defining farm-like microbiota, it is now possible to evaluate the asthma-protective 

potential associated with a given indoor microbial community, select suitable donor microbiota for 

interventions, and monitor the changes induced in the recipient home microbiota. 
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Figure 1. Differences between farm and non-farm rural home indoor microbiota. (a) 

Dissimilarity (β –diversity) of bacterial/archaeal (phylogenetically informed) and fungal presence-

absence and relative abundance patterns in living-room floor dust of farm (orange) and non-farm 

(blue) homes in LUKAS1. The first two PCoA axes with %-variance explained are presented. The 

differences between farm homes (n=107 with bacteria; n=101 with fungi) vs non-farm homes (n=96 

with bacteria; n=97 with fungi) were significant in all the four distance matrices (Permutational 

Multivariance of Anova
38

, p<0.001). α-Diversity of each sample is illustrated by the size of the 

points on the plot, which are directly proportional to richness (number of OTUs) or index of 

Shannon entropy as indicated. (b) Relative abundance of predominant b44acterial phyla in non-

farm and farm homes. (c) Bacterial/archaeal taxa with significantly higher relative abundance in 

farm than non-farm (orange circles) or in non-farm than farm homes (blue circles) as determined 

with ANCOM. Clades are coloured respectively up to family level. Top 20 bacterial genera with the 

greatest absolute difference in median relative abundance between farm and non-farm homes are 

indicated with a letter (A-T). For unassigned genera the highest assigned taxonomic name is 

presented (f=family, o=order).  

 

Figure 2. Farm home-like indoor microbiota is associated with asthma protection in non-farm 

children. Association between asthma during the first 6 years of life and compositional similarity 

of home indoor dust bacterial/archaeal or fungal microbiota at age 2 months to that in farm homes 

in the suburban LUKAS2 (n=164) and the pooled LUKAS1 and LUKAS2 (LUKAS, n=251) 

studies. The compositional similarity was defined as beta-diversity-derived predicted probability 

that the sample would be from a LUKAS1 farm as opposed to LUKAS1 non-farm home. The 

association with asthma is shown as adjusted odds ratio per interquartile range (IQR) of the 

probability. The center values represent the odds ratios and the error bars 95% confidence intervals. 

 

Figure 3. Replication of the asthma protective effect of growing up in a home with a farm 

home -like indoor bacterial microbiota. Principal coordinate analysis of (a) unweighted and (b) 

weighted Generalized UniFrac analysis of GABRIELA mattress dust and LUKAS floor dust 

bacterial/archaeal microbiota. N(LUKAS non-farm)=278, N(LUKAS farm home)=116, N(GABRIELA non-farm)=632, 

N(GABRIELA farm home)=399, N(GABRIELA animal shed)=50. While the cohort specific differences load 

primarily to the first axis (horizontal) in the presence-absence microbial data, the farm-effect on 

microbiota is visible in the second axis (vertical) where the farmhouses from both cohorts cluster 

closer to the animal shed microbiota. In the weighted analysis, this clustering pattern is also present 
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but less pronounced. (c) The association between farm home–like indoor microbiota and asthma by 

6 years of age among LUKAS (n=244) and by 6 to 12 years of age among GABRIELA (N=603) 

children living in a non-farm home. The farm home–like microbiota was defined as modeled 

FaRMILUKAS (derived in LUKAS1) and FaRMIGABRIELA (derived in GABRIELA) and adjusted odds 

ratios (aOR) are presented per interquartile range of modeled FaRMILUKAS(blue)/FaRMIGABRIELA 

(red). The center values represent the odds ratios and the error bars 95% confidence intervals (CI). 

The primary replication from LUKAS to GABRIELA is highlighted with light orange shade (d) 

The same 4 taxa (Streptococcaceae, Sphingobacteriia, Alphaproteobacteria and Cyanobacteria) 

marked with a black arch explained nearly two-thirds of the variance of FaRMI in both LUKAS 

(FaRMILUKAS) and in GABRIELA (FaRMIGABRIELA). The pie charts present all taxa with the 

adjusted R
2
>1%. The direction of the triangle indicates negative (▼) or positive (▲) association 

with FaRMI and/or FaRMIGABRIELA. The letters after the taxa names stand for p=phylum, c=class, 

o=order, f= family, and g=genus. 
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Table 1. FaRMI was associated with reduced proinflammatory responsiveness. The association 

between FaRMI and serum CRP levels and cytokine responses to ex vivo microbial stimulants in 

LUKAS non-farm children. Adjusted estimates of quantile regression analysis for cytokine/CRP 

concentrations at the 75
th

 percentile per one interquartile range (IQR) change in FaRMI. The 

adjusted estimates are presented as a percentage of IQR of the respective cytokine/CRP 

concentration to allow comparison between the different analytes. *Quantile regression process 

plots are shown in the Extended Data Figure 6 for all analytes with suggestive associations (p<0.1) 

to FaRMI anywhere between the 25
th

 and 80
th

 percentile. Where suggestive association was 

observed at the 75
th

 percentile, p-value
1
 is presented in the superscript. 

Cytokine 

Adjusted relative estimates
2
 at 75

th
 percentile in relation to FaRMI  

 

 

 

 

Capacity to produce   Response to bacterial exposure   In vivo 
activation

3 PI   LPS   PPG   

1 year
4
   6 years

5
   1 year

6
   6 years

5
   6 years

7
   6 years

7
 

IL-1β 7.7   22.7   -27.5*0.021   -25.0*   -33.8*0.056     ‒ 

IL-4 19.7   -16.5   ‒   ‒   ‒   ‒ 

IL-5 9.7   11.4   ‒   ‒   ‒   ‒ 

IL-6 -15.9   10.5   -16.6*   -25.5*0.073    -30.7*0.076   24 

IL-10 -28.9*0.022   -13.1   -12.1   1.6   -27.8*   13.1 

IL-12p70 ‒   ‒   5.5   -43.0*0.050   -33.2*0.084     ‒ 

IL-13 18.1*   6.8   ‒   ‒   ‒   ‒ 

IL-17A -3.8   -9.1*   ‒   ‒   ‒   ‒ 

IFN-γ -7.5   -0.1*   -5.2   -46.2*0.081     -44.8* 0.017   ‒ 

TNF-α -4.7   -16.1   -22.9*0.095   -31.8*0.073     -8.3*    ‒ 

CRP ND   ND   ND   ND   ND   -69.2* 0.016 
1
Two-sided, uncorrected for multiple testing. 

2
Adjusted for sex, maternal and paternal allergic 

disease, maternal smoking during pregnancy, number of older siblings, maternal education and 

cohort. 
3
Cytokines measured in non-stimulated cell culture media and CRP from serum.

 4
N=231 for 

IL-1β and IL-4; N=230 for IL-5, IL-10, IL-12p70, IL-13 and IL17A; N=208 for IFN-γ and TNF-α; 

and N=204 for IL-6;.
 5

N=155; 
6
N=234;

 7
N=154 for cytokines and N=179 for CRP. ND = not 

determined, “‒” = Data not analysed because over 25% of observations below the detection limit, 

PI= phorbol 12-myristate 13-acetate and ionomycin, LPS=lipopolysaccharide, PPG=peptidoglycan, 

IL=interleukin and IFN=interferon, CRP=C-reactive protein, FaRMI=Farm house Resembling 

Microbiota Index a probability variable describing the similarity of home indoor dust microbiota 

bacterial/archaeal relative abundance to that in LUKAS1 farm homes. 

  



12 
 

REFERENCES 

1. von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nature 
reviews. Immunology 10, 861-868 (2010). 

2. Ege, M.J., et al. Exposure to environmental microorganisms and childhood asthma. The New 
England journal of medicine 364, 701-709 (2011). 

3. Schuijs, M.J., et al. Farm dust and endotoxin protect against allergy through A20 induction in lung 
epithelial cells. Science 349, 1106-1110 (2015). 

4. Karvonen, A.M., et al. Confirmed moisture damage at home, respiratory symptoms and atopy in 
early life: a birth-cohort study. Pediatrics 124, e329-338 (2009). 

5. Liu, A.H. Revisiting the hygiene hypothesis for allergy and asthma. Journal of Allergy and Clinical 
Immunology 136, 860-865 (2015). 

6. Reynolds, L.A. & Finlay, B.B. Early life factors that affect allergy development. Nature reviews. 
Immunology advance online publication(2017). 

7. Stein, M.M., et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. The 
New England journal of medicine 375, 411-421 (2016). 

8. Debarry, J., et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm 
cowsheds possess strong allergy-protective properties. The Journal of allergy and clinical 
immunology 119, 1514-1521 (2007). 

9. Karvonen, A.M., et al. Quantity and diversity of environmental microbial exposure and 
development of asthma: a birth cohort study. Allergy 69, 1092-1101 (2014). 

10. USEPA. U.S. EPA. Child-Specific Exposure Factors Handbook (Final Report) (Washington, DC, 
2008). 

11. Hyytiainen, H.K., et al. Crawling-induced floor dust resuspension affects the microbiota of the 
infant breathing zone. Microbiome 6, 25 (2018). 

12. Janssen, P.H. & Kirs, M. Structure of the archaeal community of the rumen. Applied and 
environmental microbiology 74, 3619-3625 (2008). 

13. Birzele, L.T., et al. Environmental and mucosal microbiota and their role in childhood asthma. 
Allergy 72, 109-119 (2017). 

14. Braun-Fahrlander, C., et al. Environmental exposure to endotoxin and its relation to asthma in 
school-age children. The New England journal of medicine 347, 869-877 (2002). 

15. Lynch, S.V., et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and 
atopy in urban children. The Journal of allergy and clinical immunology 134, 593-601 e512 (2014). 

16. Valkonen, M., et al. Microbial characteristics in homes of asthmatic and non-asthmatic adults in 
the ECRHS cohort. Indoor air 28, 16-27 (2018). 

17. Ottman, N., et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a 
mouse model. Journal of Allergy and Clinical Immunology (2018). 

18. Genuneit, J., et al. The GABRIEL Advanced Surveys: study design, participation and evaluation of 
bias. Paediatric and perinatal epidemiology 25, 436-447 (2011). 

19. Leppanen, H.K., et al. Quantitative assessment of microbes from samples of indoor air and dust. 
Journal of exposure science & environmental epidemiology (2017). 

20. Adams, R.I., Bateman, A.C., Bik, H.M. & Meadow, J.F. Microbiota of the indoor environment: a 
meta-analysis. Microbiome 3, 49 (2015). 

21. Barberan, A., et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc 
Natl Acad Sci U S A 112, 5756-5761 (2015). 

22. Natarajan, S., Kim, J., Bouchard, J., Cruikshank, W. & Remick, D.G. Pulmonary endotoxin 
tolerance protects against cockroach allergen-induced asthma-like inflammation in a mouse 
model. International archives of allergy and immunology 158, 120-130 (2012). 

23. Kumar, S. & Adhikari, A. Dose-dependent immunomodulating effects of endotoxin in allergic 
airway inflammation. Innate immunity 23, 249-257 (2017). 

24. Rochat, M.K., et al. Maternal vitamin D intake during pregnancy increases gene expression of 
ILT3 and ILT4 in cord blood. Clinical and experimental allergy : journal of the British Society for 
Allergy and Clinical Immunology 40, 786-794 (2010). 



13 
 

25. Wu, J. & Horuzsko, A. Expression and function of ILTs on tolerogenic dendritic cells. Human 
immunology 70, 353-356 (2009). 

26. de Heer, H.J., et al. Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic 
Reactions to Harmless Inhaled Antigen. The Journal of Experimental Medicine 200, 89-98 (2004). 

27. Rosenblueth, M., Martinez-Romero, J.C., Reyes-Prieto, M., Rogel, M.A. & Martinez-Romero, E. 
Environmental mycobacteria: a threat to human health? DNA and cell biology 30, 633-640 (2011). 

28. Deng, W., et al. Assembly, structure, function and regulation of type III secretion systems. Nature 
reviews. Microbiology 15, 323-337 (2017). 

29. Wallden, K., Rivera-Calzada, A. & Waksman, G. Type IV secretion systems: versatility and 
diversity in function. Cellular microbiology 12, 1203-1212 (2010). 

30. Shrivastava, R. & Miller, J.F. Virulence factor secretion and translocation by Bordetella species. 
Current opinion in microbiology 12, 88-93 (2009). 

31. Pizarro-Cerdá, J. & Cossart, P. Bacterial Adhesion and Entry into Host Cells. Cell 124, 715-727 
(2006). 

32. Shan, L., He, P. & Sheen, J. Intercepting Host MAPK Signaling Cascades by Bacterial Type III 
Effectors. Cell host & microbe 1, 167-174 (2007). 

33. Bakowski, M.A., Cirulis, J.T., Brown, N.F., Finlay, B.B. & Brumell, J.H. SopD acts cooperatively with 
SopB during Salmonella enterica serovar Typhimurium invasion. Cellular microbiology 9, 2839-
2855 (2007). 

34. Shao, F., Merritt, P.M., Bao, Z., Innes, R.W. & Dixon, J.E. A Yersinia effector and a Pseudomonas 
avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. 
Cell 109, 575-588 (2002). 

35. Needham, B.D. & Trent, M.S. Fortifying the barrier: the impact of lipid A remodelling on bacterial 
pathogenesis. Nature Reviews Microbiology 11, 467 (2013). 

36. Bisgaard, H., et al. Childhood asthma after bacterial colonization of the airway in neonates. The 
New England journal of medicine 357, 1487-1495 (2007). 

37. O'Connor, G.T., et al. Early-life home environment and risk of asthma among inner-city children. 
The Journal of allergy and clinical immunology 141, 1468-1475 (2018). 

38. Oksanen, J., et al. vgan: Community Ecology Package. in R package (R Foundation for Statistical 
Computing, Vienna, Austria, 2016). 

 



14 
 

ONLINE METHODS 

The birth cohorts. In LUKAS1 (N=214) equal numbers of pregnant mothers living in farms with 

livestock and mother’s living in rural areas but not in farms were recruited in the major local 

hospitals in eastern and middle Finland (Kuopio, Iisalmi, Jyväskylä and Joensuu) between September 

2002-May 2004. The inclusion criteria were maternal age ≥18 years, singleton pregnancy, native 

language Finnish, no plans to move from the study area, expected delivery in one of the study 

hospitals, siblings of the study child not participating in the study, parturition at ≥37 weeks of 

gestation, no congenital abnormalities in newborn and successful cord blood sampling. In LUKAS2 

all pregnant women with estimated delivery at Kuopio University Hospital between May 2004 and 

May 2005 were invited to join the study without selection by occupation or area of living. Mothers 

living in apartments were excluded to maintain housing conditions comparable with LUKAS1. In the 

current study LUKAS2 children living on farms were excluded (n=11). Written informed consent 

was acquired from all LUKAS mothers. Ethical permission was granted by the Research Ethics 

Committee, Hospital District of Northern Savo. The replication stage included 1031 children from 

the cross-sectional, Phase II GABRIELA study
2
 with data on child home indoor microbiome. The 

children in the study were 6 to 12 years old (median 9) and they lived in the rural regions around 

Munich or Ulm in a farm home (n=399) or in non-farm home with (n=334) or without (n=298) 

regular exposure to farms.  

 

Sample collection and processing. In the LUKAS study, the living room floor dust samples were 

collected at index child age of 2 months. The sample was collected by the occupants into a nylon 

sampling sock by vacuuming an area of 1 m
2
 from a rug for two minutes or in the absence of a rug, 

an area of 4 m
2
 from a smooth floor for two minutes. The living room was defined as the room where 

the family spent most time after dinner. The dust samples were homogenized by sieving through a 

sterile strainer, dried in a desiccator and stored at -20°C until DNA extraction. Genomic DNA was 

extracted from 20mg of dust using bead beating method and chemagic DNA plant kit (Perkin Elmer) 

on the KingFisher DNA extraction robot. 

 

In the GABRIELA study, mattress dust was collected by the parents of the participating children 

using a standardized dust collection protocol.
39

 The whole area of the child's mattress was vacuumed 

for a period of 2 min using a dust sampling nylon sock (Allied Filter Fabrics Pty Ltd, Australia) 

attached to the vacuum cleaner hose. Stable dust samples were collected with a brush from horizontal 

areas above 1.5 m. The dust samples were stored at -80°C after arrival at the study center. DNA 

extraction was performed using MoBio PowerSoil Extraction Kit (MO BIO Laboratories, Carlsbad, 
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CA, USA) according to the Earth Microbiome Project Protocols 

(http://www.earthmicrobiome.org/emp-standard-protocols/). 

 

Sequencing and bioinformatics. In LUKAS the bacterial/archaeal 16S rRNA gene V4 region was 

amplified using 515F/806R primers
40

 and fungal ITS region by ITS1F/ITS2 primers.
41

 These DNA 

amplicons were sequenced as 300 base pair paired-end reads with Illumina MiSeq V3 chemistry. The 

amplifications and sequencing were performed by commercial provider (LGC Genomics GmbH, 

Berlin, Germany). In GABRIELA, the Earth Microbiome Project Protocols were used to create 

bacterial/archaeal amplicon libraries using identical primers (515F/806R) to LUKAS, followed by 

sequencing on the Illumina HiSeq platform. At the discovery stage, sequence reads were merged with 

FLASH, 
42

 while QIIME
43

 was used for quality filtering, exclusion of chimeric sequences and further 

processing. Sequences were clustered into operational taxonomic units (OTUs) at 97% similarity 

using the open-reference protocol
44

 against the 16S rRNA gene database, greengenes, or the ITS 

database UNITE. OTUs representing less than 0.001% of the total sequences (minimum count of 83 

and 93 sequences for bacteria and fungi, respectively) were excluded. Chloroplast (n=93) and 

mitochondrial (n=23) sequences were removed from the bacteria OTU table. All samples with less 

than 2150 sequences were not included in the analyses. Rarefaction curves are presented in the 

Supplementary figure 1. 

In order to obtain compatible data for the replication stage, the reads from GABRIELA and LUKAS 

sequencing were processed together. The replication data was prepared using the Deblur software, 

based on sub-operational-taxonomic-units (sOTU). This achieves single-nucleotide resolution which 

supports the combination of different datasets.
45

 Only forward R1 reads of Illumina paired end was 

used in this approach and R2 reverse reads were discarded in order to avoid noise from reverse reads 

during deblurring. Then low-quality reads, and artificial sequences such as primers and adapters, 

were removed. Each forward read file was trimmed to the lowest available length in any of the data 

sets: 115bp (from original length of about 260bp). After that, the sequences were clustered by the 

Deblur algorithm and the sOTU table was obtained. The minimum cutoff for a single sOTU was set 

as 50 reads, and sOTUs below that cutoff were filtered out. Taxonomy was assigned based on 

Ribosomal Database Project. 

Asthma and atopic sensitization. Data on asthma outcome was obtained from parent-reported 

questionnaires. Doctor-diagnosed asthma at least once or asthmatic bronchitis more than once by the 

age of 6 years was termed as ‘asthma ever’, and asthma with medication or wheezing at the age of 6 

years as ‘active asthma’. Immunological phenotype was assessed from venous blood samples 

collected at 1 and 6 years of age. Atopic sensitization was evaluated at 6 years by specific 
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immunoglobulin E (sIgE) measurements to 13 inhaled (dust mites: Dermatophagoides pteronyssinus 

and D. farinae; pollens: alder, birch, European hazel, grass pollen mixture, rye, mugwort and 

plantain; and cat, horse and dog dander; as well as the mold Alternaria alternate) and 6 food 

allergens (hen’s egg, cow’s milk, peanut, hazelnut, carrot and wheat, Mediwiss Analytic, Moers, 

Germany) 
46

 with cut-off ≥ 3.5kU/L.  

 

Immune responsiveness. Cytokine responsiveness was evaluated from cultured whole blood 

collected at 1 and 6 years as earlier described.
47

 Overall cytokine production capacity profile of 

leukocytes was assessed from whole blood cultured 24h with phorbol 12-myristate 13-acetate and 

ionomycin (PI, 1 µg/mL) and responsiveness to bacterial cell wall components from cultures 

stimulated 24h with lipopolysaccharide (LPS, 0.1 μg/mL) or peptidoglycan (PPG, 10 µg/ml, at 6 

years only). At 6 years, also non-stimulated cultures were assessed to analyse spontaneous cytokine 

secretion. All stimulants were from Sigma, Deisenhofen, Germany. The concentration of interleukins 

(IL) 1b, 4, 5, 6, 10, 12p70, 13, 17A and interferon-γ were determined from the cell culture 

supernatants with multiplexed cytometric bead arrays (BD human CBAflex) with FACSArray 

bioanalyzer system (BD Biosciences).
48

  The concentrations were standardized by leukocyte counts. 

Non-detects were set to the detection limit standardized by leukocyte count. The CRP values at the 

six years were measured by SYNCHRON® System(s) (Beckman Coulter Inc., Fullerton, CA, USA).  

 

Expression of the tolerance associated surface receptors ILT3 and ILT4 on circulating mDCs and 

pDCs was analyzed by flow cytometry from cryopreserved peripheral blood mononuclear cell 

(PBMC) samples of a subpopulation of LUKAS1 children as described earlier.
49

 The mean viability 

of thawed cells was 93.9%. The antibodies used for staining are described in Supplementary Table 14 

and the gating strategy in Supplementary Figure 2. The LUKAS1 subpopulation data represented 1:2 

asthma – non-asthma design where all children with asthma ever by 6 years were included if their 

PBMC sample and specific IgE data was available at age 6. A double number of non-asthmatic 

children with one half living on a farm were randomly selected of children with available PBMC 

sample and IgE data at age 6 with priority on children with dendritic cell data at age 4.5 years. Only 

data from children not living on a farm was included in the analyses for this study. 

 

Microbial diversity. Measures of α-diversity in LUKAS1 and 2 samples, richness (defined as OTUs 

observed) and Shannon entropy, were calculated with QIIME from 2150 resampled sequences and 

presented as a mean of ten iterations. Phylogenetically-informed variation between pairs of samples 

(β-diversity) in the bacterial/archaeal community was evaluated with Generalized UniFrac distances, 

calculated on using GUniFrac R-package
50

 with midpoint rooted tree and using α=0 for abundance 

unweighted and α=1 for abundance weighted β-diversity. Due to the lack of conserved sequences 
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within ITS that would allow reliably establishing phylogenetic relatedness between taxa, we did not 

calculate phylogenetically informed beta-diversity within fungal microbiota. Instead, the beta-

diversity within fungal community was evaluated by a Bray-Curtis distance matrix calculated on 

binary (presence/absence) or relative abundance data. Principal coordinate analyses were carried out 

using R pcoa function in ape-package with default settings.
51

 Statistical significance of group-wise 

differences in the beta-diversity matrix were analyzed by PERMANOVA using adonis function from 

vegan R-package with default settings (999 permutations).  

 

Defining microbial taxa associated with farm- or non-farm environments. Differences in 

phylum, class, order, family and genus level relative abundance between farm and non-farm homes 

was assessed using ANCOM v1.1-3 with false discovery rate (FDR) of 0.05.
52

 The association to 

farm- or non-farm environment was assigned to that with higher median abundance. 

 

Defining farm home microbiota-like community composition.  

Farm home microbiota-like community composition was modelled in LUKAS1 with logistic 

regression analysis (PROC LOGISTIC statement, SAS version 9.3). The home location on a farm or 

non-farm rural environment was the dependent variable and the main components of Principal 

Coordinate Analysis (PCoA) axis scores of beta-diversity matrices were the predictor variables. 

Bacterial and fungal microbiota were investigated separately. For both bacteria and fungi separate 

models were built using axis scores from PCoA of abundance unweighted and weighted β-diversity 

matrices. The PCoA axes were selected based on the scree plot method including axes above the 

point at which the variance explained by the additional axes levels off (Supplementary Figure 3). The 

models give an estimate of the probability that the sample is from a farm home. The farm home 

likeness of the microbial composition in the LUKAS2 non-farm homes was then estimated by 

applying the regression coeffients obtained from the LUKAS1-based models to the corresponding 

microbial data from LUKAS2 samples.  

  

Some analyses were done in non-farm homes of both LUKAS2 and LUKAS1 to obtain increased 

sample size and power if results remain comparable as was observed. Due to the discovered 

association with asthma, the probability that was modelled based on the relative abundance weighted 

bacterial/archaeal beta-diversity was named Farm home Resembling Microbiota Index (FaRMI) and 

studied further in greater detail. In this model the first four PCoA axes were used as the predictor 

variables (Supplementary Figure 3). In the replication stage analogous logistic regression equation 

was built in GABRIELA to obtain probability that a given microbial composition represents (is more 

similar to) GABRIELA farm homes as opposed to homes of children neither living nor regularly 

exposed to farms (FaRMIGABRIELA). 
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To test alternative methodological approach, we calculated equivalent to FaRMI (i.e. probability 

predicted based on microbiota composition that the sample is from a farm home as opposed to non-

farm home) directly from the OTU-table with random forest analysis using RandomForestClassifier 

from scikit-learn python module.
53

 Supervised training of the model was done in LUKAS1 dataset, 

which was randomly split to training and test set so that the test set had 25% of the samples. The 

classifier was trained using the training set and tested using the test set. The trained classifier was 

then used to calculate probability scores also for LUKAS2 samples.  

 

Oligotyping Methanobrevibacter genus. Oligotyping analysis
54

 with Oligotyping pipeline script 

version 1.7 was used to obtain indicative species level identification within Methanobrevibacter 

genus. This was done to determine whether the farm home associated increase in 

Methanobrevibacter was more likely of ruminant or human origin. Within LUKAS1 and 2 samples 

there were in total 1085 sequence reads, within 181 samples, that were assigned to 

Methanobrevibacterium genus based on OTU IDs. These sequences were aligned against the 

greengenes 16S rRNA database reference alignment using mothur version 1.35
55

 and trimmed for 

equal length of 253 base pairs. Uninformative positions due to insertion or deletion were removed 

with O-trim-uninformative-columns-from-alignment script. To obtain taxonomic assignments the 

oligotype reads were blasted with 16S Ribosomal RNA Bacteria/Archael database (NCBI blastn tool) 

and the results were filtered for minimum 99% identity. The results were optimized for highly similar 

sequences with megablast.  

 

Source tracking. Using the Qiita web portal (https://qiita.ucsd.edu),56 sequences from the LUKAS 

sample data were clustered into OTUs against the Greengenes database using the closed reference 

workflow. These samples were combined with publicly available studies selected as potential source 

environments (bovine, human and soil) for the target LUKAS sequences. The Qiita IDs for the 

studies used are provided in the Supplementary Table 15. The combined data table was run through 

SourceTracker in the R platform to predict the sources of bacteria. 

 

Predicted functional metagenomics. The metagenome functional content was predicted using 

PICRUSt software following the standard pipeline (http://picrust.github.io/picrust/ ) with the LUKAS 

OTU table, from which de-novo OTUs were removed, as the input file.
57

 The functional predictions 

were based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology database. The quality 

of the PICRUSt predictions was good as indicated by low Nearest Sequenced Taxon Index (NSTI) 

median 0.049 (interquartile range 0.042-0.58) describing the availability of nearby genome 

representatives.
57

 The data was analysed using STAMP software version 2.1.3.
58

 Functional 
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predictions associated with farmhouse-like bacterial/archaeal relative abundance were analysed by 

White’s non-parametric t-test
59

 using Benjamini-Hochberg false discovery rate for multiple testing 

correction. FaRMI was studied as a dichotomous variable, with probability of 0.5 as the cut-off. 

 

Determinants with possible influence on indoor microbiome. To find determinants of farmhouse-

like bacterial/archaeal relative abundance (FaRMI) in non-farm homes several environmental, 

building and occupancy associated determinants were tested including: the number of older siblings, 

type of living area (city centre, suburban, rural community, rural sparse), environmental biodiversity 

(based on land use information), home construction year, presence of basement, ground (slab vs. 

other), home frame material, moisture (condensation on windows, relative humidity and indoor 

specific absolute humidity), ventilation, heating with wood, contact with farm-animals, closeness of 

dunghill, having pets, walking with outdoor shoes inside. The effect of determinants on FaRMI were 

analysed by chi-square test using categorized variables. FaRMI was used as a dichotomous variable 

using probability of 0.5 as the cut-off. Independence of found significant associations from other, 

highly collinear determinants, was assessed by logistic regression analysis (data not shown).  

 

Replication. Contribution of specific taxa to the PCoA axes will vary depending on the samples 

included in the beta-diversity matrix. Therefore the “true” replicability of the findings in LUKAS 

(LUKAS1 and LUKAS2) with LUKAS1 farm home-like microbiota (FaRMI) were tested using 

generalized linear models (GLM) analysis based estimates of FaRMI (PROC GLMSELECT 

statement, SAS 9.3). The estimates were calculated with the relative abundances of sOTUs under a 

particular taxa from phylum down to genus level as predictor variables. The taxa variables were 

ranked by the relative abundance percentile to standardize data and to avoid issues with influential 

data points. The variables were entered into the GLM model based on their significance until 

minimum predicted residual error sum of squares (PRESS) was reached using 10-fold cross 

validation.
60

 We also tested the replicability in the other direction, i.e. from GABRIELA to LUKAS. 

For this purpose we first computed FaRMIGABRIELA, i.e. beta-diversity derived probability, predicted 

using beta-diversity based modelling of bacterial/archaeal relative abundance, a given sample 

represents GABRIELA farmhouse rather than a home of children neither living nor regularly exposed 

to farms. The FaRMIGABRIELA was then modelled using the GLM-based analysis. 

 

Statistical analyses on health outcomes. The associations between the probability variables 

(including FaRMI) and asthma were studied with logistic regression models (PROC LOGISTIC 

statement, SAS version 9.3). These models were adjusted as per a priori decision for basic 

confounders including (as applicable) living on a farm, cohort, gender, the maternal history of 

allergic diseases (asthma, atopic dermatitis or allergic rhinitis), number of older siblings and smoking 
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during pregnancy (never, only before pregnancy, during pregnancy). In addition the effect of several 

other confounding factors on the association between FaRMI and asthma were tested using the 

change-in-estimate criterion with 10% cutoff. The tested variables included paternal history of atopic 

disease (hay fever, atopic dermatitis and/or asthma) and asthma, maternal and paternal education 

levels, birth weight, mode of delivery, indoor exposure to dog and/or cat ownership at the age of 2 

months, distance to farm, breast-feeding, consumption of farm milk, day care attendance and regular 

exposure to passive tobacco smoke at the age of 1 year as well as house type (detached vs. row 

house) and age, season (winter, spring/autumn, summer), type of vacuumed floor and time from last 

vacuuming with reference to dust sampling. Based on these analyses, all asthma association models 

were further adjusted by paternal allergic disease and maternal education level. Additionally, the 

independence of the observed association of markers of microbial diversity, proxies of total microbial 

levels
9
 including loads of lipopolysaccharide10:0-16:0 (LPS10:0-16:0), muramic acid and endotoxin, 

and atopic sensitization were tested as indicated in the results. Overall, the additional adjustments had 

little influence to the observed effects. Where indicated, model instabilities due to small number of 

cases in stratified analyses were solved by combining categories in the instability causing variable 

and/or by using Firth's penalized likelihood‐based bias‐adjusted estimates.
61

  

The association between the FaRMI and cytokine responses ex vivo were studied using quantile 

regression that is suitable for skewed data and found to be robust against heteroscedastic errors 

(PROC QUANTREG, SAS 9.3).
62

 The cytokine analyses were adjusted for the a priori decided basic 

confounders. Data on cytokine stimulations where the cytokine concentrations were below the 

detecetion limit in over 25% of samples were not analyzed. In the replication stage, with GABRIELA 

data, the models were adjusted with comparable variables as in LUKAS including gender, first 

degree relative with allergic disease (asthma, atopic dermatitis or hay fever), number of older sibling, 

smoking during pregnancy (yes/no) and maternal education level as well as study design related 

variables including age of the child, study center and in models with non-farm children alone the 

strata (i.e. not living but regularly exposed to farms, neither exposed nor living on a farm). Based on 

stratified analysis and non-significant interaction term, there was no evidence that strata had 

significant influence on the reported results (data not shown). Associations between FaRMI and 

dendritic cells inhibitory molecule expression were assessed within subsample of LUKAS1 non-farm 

children stratified by asthma ever using Spearman rank’s correlation test (PROC CORR statement, 

SAS 9.3) with the a priori decided basic confounders as partial variables. To test whether such 

association were different between asthmatic and non-asthmatics was determined based on 

interaction term significance in logistic regression modeling adjusted with the a priori decided basic 

confounders. 
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All statistical analyses with health outcomes were performed using SAS Enterprise Guide 5.1 (SAS 

Institute Inc., Cary, NC, USA) unless stated otherwise. 

 

Data availability. The bacterial and fungal sequences from LUKAS have been deposited in 

European Bioinformatics Institute European Nucleotide Archive database under accession number 

PRJEB29081. Other data supporting the findings of this study are available through direct 

communication with the corresponding author. Limitations apply to variables where too small 

subgroups may compromise research participant privacy/consent. In these cases amendment to the 

ethical approval will be required prior to data transfer. 

Code availability. All codes used in the study are available on the public repository 

[https://github.com/PirkkaKirjavainen/FaRMI]. Contact the corresponding author for more 

information. 
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Supplementary Figures 
 

a)                               b)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 1. Rarefaction curves for richness (observed OTUs) and Shannon index for 

each sample in LUKAS1 (n=203) and LUKAS2 (n=191). The figures indicate that alpha-diversity based 

sample rankings are largely established at ~1000 sequences. 
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Supplementary Figure 2. Gating strategy for the identification of dendritic cell (DC) subsets.ref 49 

Erythrocytes and debris were gated out according to the size (forward scatter) and cytoplasmic 

granularity (sideward scatter). 7-AAD positive dead cells, CD19+ B cells, and CD14+ monocytes were 

excluded by high PE-Cy 5.5 fluorescence. The main peripheral blood DC subsets were identified as 

BDCA2+ pDCs and BDCA1+CD11c+ mDCs. Gating adjustments were based on fluorescence minus 

one (FMO) tubes. The surface expression of ILT3 and ILT4 was analyzed after the DC subtype 

identification. Doublets were excluded using forward scatter area (FSC-A) and forward scatter 

height (FSC-H) to confirm that doublets did not interfere with analysis (not shown). 
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a. Bacterial presence-absence  b. Bacterial relative abundance 
 
 
 
 
 
 
 
 
 
 
 
 
c. Fungal presence-absence  d. Fungal relative abundance 
 
 
 
 
 
 
 
 
 
 
 
 
e. Bacterial relative abundance in the replication dataset  
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3. Scree plots of principal coordinate analyses (PCoA) of beta-diversity 

matrices obtained at discovery stage from unweighted (a) or weighted (b) generalized UniFrac 

analysis of bacterial data or Bray-Curtis analysis of fungal presence absence (c) or relative 

abundance data (d); and at replication phase from PCoA of weighted UniFrac analysis of bacterial 

data. The PCoA axes included in the different farm-like microbiota analysis models are marked with 

orange. We selected axes above the point at which the variance explained by the additional axes 

levels off. In borderline cases four axes were selected for consistency. 
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Supplementary Tables 
 

Supplementary Table 1. Bacterial/archaeal taxa with significantly (two-sided corrected P-

value<0.05) (a) higher or (b) lower relative abundance in the living room floor dust of the farm 

(n=107) than non-farm rural homes (n=96) in LUKAS1 as defined by ANCOM. Taxa in the tables are 

sorted first by taxonomic level, second by absolute difference in median proportions, or, where that 

is zero, by absolute difference in mean log abundance (number of sequences). 

 
a.) Bacterial/archaeal taxa with higher relative abundance in the farm than non-farm rural homes in LUKAS1. 

Taxon   
Median  

Proportion (%) 
  

Prevalence 
(%) 

Phylum Class Order Family Genus   

Non-
farm 
home 

Farm 
home   

Non-
farm 
home 

Farm 
home 

Chloroflexi           0.16 0.42   99 100 

Verrucomicrobia           0.06 0.12   95 100 

Euryarchaeota           0 0.04   19 91 

Spirochaetes           0 0.02   38 74 

                      

Chloroflexi Thermomicrobia         0.07 0.27   98 100 

Euryarchaeota Methanobacteria         0 0.04   17 90 

Spirochaetes Spirochaetes         0 0.02   38 74 

Verrucomicrobia Verruco5         0 0   1 48 

                      

Bacteroidetes Sphingobacteriia Sphingobacteriales       0.80 1.71   100 100 

Proteobacteria Gammaproteobacteria Xanthomonadales       0.43 0.82   100 100 

Chloroflexi Thermomicrobia JG30KFCM45       0.07 0.26   98 100 

Firmicutes Bacilli Turicibacterales       0.01 0.11   62 99 

Proteobacteria Gammaproteobacteria Alteromonadales       0.02 0.12   75 98 

Proteobacteria Gammaproteobacteria Oceanospirillales       0 0.04   29 83 

Euryarchaeota Methanobacteria Methanobacteriales       0 0.04   17 90 

Proteobacteria Gammaproteobacteria Aeromonadales       0 0.03   67 87 

Proteobacteria Deltaproteobacteria Desulfovibrionales       0 0.02   34 69 

Tenericutes Mollicutes RF39       0 0.01   22 65 

Verrucomicrobia Verruco5 WCHB141       0 0   1 48 

Euryarchaeota Methanomicrobia Methanomicrobiales     0 0   1 44 

                      

Firmicutes Bacilli Lactobacillales Aerococcaceae     0.37 1.44   100 100 

Firmicutes Clostridia Clostridiales Ruminococcaceae     0.44 1.51   100 100 

Actinobacteria Actinobacteria Actinomycetales Dermabacteraceae     0.25 0.96   100 100 

Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae     0.45 1.08   100 100 

Actinobacteria Actinobacteria Actinomycetales Brevibacteriaceae     0.13 0.67   99 100 

Firmicutes Clostridia Clostridiales Unassigned     0.19 0.66   99 100 

Firmicutes Bacilli Bacillales Planococcaceae     0.20 0.52   100 100 

Firmicutes Clostridia Clostridiales Clostridiaceae     0.25 0.55   100 100 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae     0.18 0.46   100 100 

Bacteroidetes Bacteroidia Bacteroidales Unassigned     0.00 0.24   28 95 

Chloroflexi Thermomicrobia JG30KFCM45 Unassigned     0.07 0.26   98 100 

Actinobacteria Actinobacteria Actinomycetales Dietziaceae     0.08 0.26   99 99 

Firmicutes Clostridia Clostridiales Peptostreptococcaceae   0.04 0.21   85 100 

Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae     0.07 0.22   94 100 

Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae     0.10 0.25   98 100 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae     0.01 0.15   71 93 

Actinobacteria Actinobacteria Actinomycetales Nocardiaceae     0.08 0.21   98 100 

Bacteroidetes Bacteroidia Bacteroidales RF16     0 0.13   13 88 

Firmicutes Bacilli Bacillales Bacillaceae     0.10 0.23   100 100 

Firmicutes Bacilli Turicibacterales Turicibacteraceae     0.01 0.11   62 99 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae     0.01 0.08   65 97 

Firmicutes Clostridia Clostridiales Other     0.01 0.06   53 89 

Firmicutes Clostridia Clostridiales Mogibacteriaceae     0.01 0.05   62 87 

Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae     0.02 0.06   87 97 
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Taxon 
Median  

Proportion (%) 
 

Prevalence 
(%) 

Phylum Class Order Family Genus   

Non-
farm 
home 

Farm 
home   

Non-
farm 
home 

Farm 
home 

Firmicutes Bacilli Bacillales Unassigned     0.01 0.05   66 95 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae     0 0.04   29 83 

Actinobacteria Actinobacteria Actinomycetales Yaniellaceae     0 0.04   14 87 

Actinobacteria Actinobacteria Actinomycetales Nocardiopsaceae    0 0.04  48 81 

Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae   0 0.04   17 90 

Bacteroidetes Bacteroidia Bacteroidales S247     0 0.03   33 85 

Actinobacteria Actinobacteria Actinomycetales Beutenbergiaceae     0 0.02   39 84 

Firmicutes Bacilli Bacillales Paenibacillaceae     0 0.02   49 79 

Bacteroidetes Bacteroidia Bacteroidales BS11     0 0.01   5 69 

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae     0 0.01   20 67 

Tenericutes Mollicutes RF39 Unassigned     0 0.01   22 65 

Bacteroidetes Flavobacteriia Flavobacteriales Cryomorphaceae     0 0.01   17 65 

Firmicutes Bacilli Bacillales Thermoactinomycetaceae   0 0.01   32 70 

Actinobacteria Actinobacteria Actinomycetales Bogoriellaceae     0 0.01   18 72 

Proteobacteria Gammaproteobacteria Alteromonadales Idiomarinaceae     0 0.01   7 54 

Bacteroidetes Bacteroidia Bacteroidales p253418B5     0 0.01   3 52 

Verrucomicrobia Verruco5 WCHB141 RFP12     0 0   1 48 

                      

Firmicutes Clostridia Clostridiales Ruminococcaceae Unassigned   0.13 0.99   99 100 

Actinobacteria Actinobacteria Actinomycetales Dermabacteraceae Brachybacterium   0.13 0.77   98 100 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Unassigned   0.42 1.01   100 100 

Actinobacteria Actinobacteria Actinomycetales Brevibacteriaceae Brevibacterium   0.13 0.67   99 100 

Firmicutes Clostridia Clostridiales Unassigned Unassigned   0.19 0.66   99 100 

Firmicutes Bacilli Bacillales Staphylococcaceae Jeotgalicoccus   0.10 0.52   99 100 

Firmicutes Bacilli Lactobacillales Aerococcaceae Facklamia   0.06 0.46   97 100 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter   0.08 0.46   99 100 

Firmicutes Bacilli Lactobacillales Aerococcaceae Unassigned   0.00 0.38   47 100 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Erwinia   0.16 0.48   99 100 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter   0.01 0.32   69 100 

Firmicutes Bacilli Lactobacillales Aerococcaceae Aerococcus   0.07 0.35   94 99 

Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Unassigned   0.12 0.37   100 100 

Bacteroidetes Bacteroidia Bacteroidales Unassigned Unassigned   0.00 0.24   28 95 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Unassigned   0.07 0.28   95 100 

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium   0.14 0.34   100 100 

Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Other   0.16 0.35   98 100 

Chloroflexi Thermomicrobia JG30KFCM45 Unassigned Unassigned   0.07 0.26   98 100 

Firmicutes Clostridia Clostridiales Peptostreptococcaceae Unassigned   0.02 0.19   70 100 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 57N15   0.00 0.17   18 94 

Actinobacteria Actinobacteria Actinomycetales Dietziaceae Dietzia   0.04 0.21   94 98 

Firmicutes Bacilli Bacillales Planococcaceae Planomicrobium   0.02 0.17   75 98 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium   0.03 0.18   92 99 

Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia   0.09 0.23   97 100 

Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Sphingobacterium   0.08 0.22   93 99 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Unassigned   0.01 0.15   71 93 

Bacteroidetes Bacteroidia Bacteroidales RF16 Unassigned   0.00 0.13   13 88 

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Mycoplana   0.11 0.23   97 100 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unassigned   0.04 0.16   89 100 

Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Rhodococcus   0.07 0.18   97 100 

Firmicutes Bacilli Turicibacterales Turicibacteraceae Turicibacter   0.01 0.11   62 99 

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Unassigned   0.01 0.10   54 95 

Firmicutes Bacilli Bacillales Bacillaceae Bacillus   0.06 0.15   97 100 

Firmicutes Bacilli Bacillales Staphylococcaceae Salinicoccus   0.02 0.11   79 95 

Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Luteimonas   0.02 0.10   76 100 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Trichococcus   0.00 0.08   27 98 

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea   0.03 0.11   84 99 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Unassigned   0.00 0.07   10 86 

Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Leucobacter   0.01 0.07   75 97 

Bacteroidetes Bacteroidia Bacteroidales Paraprevotellaceae CF231   0.00 0.06   10 90 

Firmicutes Clostridia Clostridiales Other Other   0.01 0.06   53 89 

Firmicutes Bacilli Bacillales Planococcaceae Other   0.01 0.06   60 93 

Firmicutes Bacilli Lactobacillales Leuconostocaceae Unassigned   0.00 0.05   44 93 

Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Lysobacter   0.01 0.07   68 94 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira   0.01 0.06   71 94 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Cellvibrio   0.01 0.05   64 94 

Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae Other   0.01 0.06   76 94 
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Taxon 
 

Median  
Proportion (%) 

 
Prevalence 

(%) 

Phylum Class Order Family Genus  

Non-
farm 
home 

Farm 
home  

Non-
farm 
home 

Farm 
home 

Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces   0.02 0.06   87 96 

Firmicutes Bacilli Bacillales Unassigned Unassigned   0.01 0.05   66 95 

Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Unassigned   0.02 0.05   84 97 

Actinobacteria Actinobacteria Actinomycetales Yaniellaceae Yaniella   0.00 0.04   14 87 

Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Other   0.01 0.04   60 94 

Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter   0.00 0.04   17 90 

Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae Oerskovia   0.00 0.03   41 90 

Firmicutes Bacilli Bacillales Planococcaceae Sporosarcina   0.01 0.04   74 94 

Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio   0.00 0.03   5 79 

Bacteroidetes Bacteroidia Bacteroidales S247 Unassigned   0.00 0.03   33 85 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Unassigned   0.00 0.03   47 82 

Firmicutes Clostridia Clostridiales Mogibacteriaceae Unassigned   0.01 0.04   55 80 

Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae Unassigned   0.02 0.05   75 87 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Comamonas   0.01 0.04   64 92 

Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium 0.00 0.03   29 87 

Bacteroidetes Flavobacteriia Flavobacteriales Weeksellaceae Wautersiella   0.00 0.03   37 80 

Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Knoellia   0.01 0.04   72 88 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Paludibacter   0.00 0.03   30 76 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Microbispora   0.01 0.03   52 89 

Actinobacteria Actinobacteria Actinomycetales Beutenbergiaceae Salana   0.00 0.02   39 84 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Unassigned   0.00 0.02   3 80 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Desemzia   0.00 0.02   39 80 

Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia   0.00 0.02   39 77 

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Myroides   0.00 0.02   17 75 

Actinobacteria Actinobacteria Actinomycetales Nocardiopsaceae Prauseria   0.00 0.02   28 74 

Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Janibacter   0.00 0.02   37 75 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Unassigned   0.00 0.02   15 79 

Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Saccharopolyspora   0.00 0.02   23 69 

Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter   0.00 0.02   12 72 

Firmicutes Bacilli Bacillales Planococcaceae Rummeliibacillus   0.00 0.02   17 79 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Other   0.01 0.02   63 90 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Oligella   0.00 0.02   13 69 

Firmicutes Bacilli Bacillales Planococcaceae Solibacillus   0.00 0.02   18 74 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus   0.00 0.02   23 74 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Unassigned   0.00 0.02   32 69 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae CandidatusPortiera   0.00 0.02   3 69 

Bacteroidetes Bacteroidia Bacteroidales BS11 Unassigned   0.00 0.01   5 69 

Firmicutes Clostridia Clostridiales Mogibacteriaceae Mogibacterium   0.00 0.01   28 75 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas   0.00 0.01   15 63 

Tenericutes Mollicutes RF39 Unassigned Unassigned   0.00 0.01   22 65 

Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae Actinotalea   0.00 0.01   23 65 

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Unassigned   0.00 0.01   1 62 

Actinobacteria Actinobacteria Actinomycetales Bogoriellaceae Georgenia   0.00 0.01   18 72 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Trueperella   0.00 0.01   8 62 

Bacteroidetes Bacteroidia Bacteroidales Paraprevotellaceae YRC22   0.00 0.01   4 63 

Bacteroidetes Flavobacteriia Flavobacteriales Cryomorphaceae Fluviicola   0.00 0.01   15 61 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges   0.00 0.01   17 61 

Bacteroidetes Flavobacteriia Flavobacteriales Weeksellaceae Weeksella   0.00 0.01   6 57 

Bacteroidetes Bacteroidia Bacteroidales p253418B5 Unassigned   0.00 0.01   3 52 

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Erysipelothrix   0.00 0.00   6 50 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae CandidatusEndobugula 0.00 0.00   4 52 

Verrucomicrobia Verruco5 WCHB141 RFP12 Unassigned   0.00 0.00   1 48 

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Aequorivita   0.00 0.00   2 51 

Firmicutes Clostridia Clostridiales Clostridiaceae Proteiniclasticum   0.00 0.00   3 51 

Proteobacteria Gammaproteobacteria Alteromonadales Idiomarinaceae Unassigned   0.00 0.00   4 48 

Proteobacteria Gammaproteobacteria Alteromonadales Chromatiaceae Unassigned   0.00 0.00   2 44 
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b.) Bacterial taxa with lower relative abundance in the farm than non-farm rural homes in LUKAS1. 

Taxon 

 

Median  
Proportion (%) 

 Prevalence 
(%) 

Phylum Class Order Family Genus 

Non-
farm 
home 

Farm 
home 

Farm 
home 

Non-
farm 
home 

Fusobacteria          0.45 0.25  99 99 

                    

Fusobacteria Fusobacteriia        0.45 0.25  99 99 

           0 0      

Proteobacteria Gammaproteobacteria Pasteurellales      1.21 0.59  100 100 

Proteobacteria Betaproteobacteria Neisseriales      0.57 0.34  99 100 

Fusobacteria Fusobacteriia Fusobacteriales      0.45 0.25  99 99 

Firmicutes Bacilli Gemellales      0.21 0.12  100 99 

Proteobacteria Betaproteobacteria Methylophilales      0.25 0.16  100 100 

Proteobacteria Gammaproteobacteria Cardiobacteriales      0.02 0.01  58 76 

                    

Firmicutes Bacilli Lactobacillales Streptococcaceae    11.36 6.08  100 100 

Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae    1.21 0.59  100 100 

Firmicutes Clostridia Clostridiales Tissierellaceae    0.87 0.54  100 100 

Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae    0.57 0.34  99 100 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae    0.20 0.07  95 98 

Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae    0.24 0.12  96 97 

Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae    0.25 0.16  100 100 

Firmicutes Bacilli Gemellales Gemellaceae    0.20 0.12  100 99 

Proteobacteria Gammaproteobacteria Cardiobacteriales Cardiobacteriaceae    0.02 0.01  58 76 

                    

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus  5.03 2.33  100 100 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus  4.89 2.51  100 100 

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus  5.14 4.13  100 100 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Micrococcus  1.44 1.02  100 100 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides  0.74 0.34  95 100 

Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus  0.65 0.36  99 100 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas  0.52 0.25  99 99 

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella  0.29 0.10  93 93 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Other  0.76 0.59  100 100 

Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium  0.19 0.04  84 96 

Firmicutes Clostridia Clostridiales Tissierellaceae Anaerococcus  0.36 0.23  100 99 

Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium  0.24 0.12  96 97 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces  0.31 0.20  99 99 

Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae Unassigned  0.25 0.15  100 100 

Firmicutes Clostridia Clostridiales Veillonellaceae Veillonella  0.21 0.12  97 100 

Firmicutes Bacilli Gemellales Gemellaceae Unassigned  0.18 0.11  98 99 

Firmicutes Clostridia Clostridiales Tissierellaceae Peptoniphilus  0.16 0.10  97 99 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella  0.11 0.05  89 97 

Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Rothia  0.17 0.12  98 99 

Firmicutes Clostridia Clostridiales Tissierellaceae Finegoldia  0.18 0.13  98 100 

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Capnocytophaga  0.11 0.06  92 95 

Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Unassigned  0.09 0.05  88 96 

Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter  0.05 0.02  82 93 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Lautropia  0.08 0.05  91 98 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia  0.03 0.02  84 91 

Firmicutes Clostridia Clostridiales Peptostreptococcacea
e 

Peptostreptococcus  0.01 0.01  60 70 

Bacteroidetes Saprospirae Saprospirales Chitinophagaceae Sediminibacterium  0.03 0.02  85 89 
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Supplementary Table 2. Oligotyping analysis of Methanobrevibacteria genus.a The final number of 

quality controlled oligotypes within Methanobrevibacteria genus was 7 of which 6 had the best 

match with a typical rumen associated species and one with human gut commensal. Within the 

LUKAS1 non-farm homes where Methanobrevibacter was detected (15/96; 15.6%), M. smithii 

oligotype was found and was also the dominant oligotype in 53% (8/15) of homes while in farm 

homes where Methanobrevibacter was detected (93/107; 86.9%), the same oligotype was found in 

6% (6/93) and was the dominant oligotype only in 5% (5/93) of the homes (Fisher’s exact test, two-

sided P-value = 1.7*10-5).  

Reads per oligotype Best match Identity E-value Typical source
ref 12

 

209 M.olleyae 99% 4e-129 Rumen 
187 M.millerae 99% 2e-127 Rumen 
164 M.millerae 100% 2e-132 Rumen 
142 M.millerae 99% 9e-131 Rumen 

139 
M.millerae/ 
M.thaueri 

99% 4e-129 Rumen 

89 M.smithii 100% 2e-132 Human gut 
38 M.olleyae 99% 2e-127 Rumen 

a 
The oligotype analysis had total purity score of 0.92.  
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Supplementary Table 3. Fungal taxa with significantly (two-sided corrected P-value<0.05) (a) higher 

or (b) lower relative abundance in the living room floor dust of the farm (n=101) than non-farm 

(n=97) rural homes in LUKAS1 as defined by ANCOM. Taxa in the tables are sorted first by 

taxonomic level, second by absolute difference in median proportions, or, where that is zero, by 

absolute difference in mean log abundance (number of sequences). 

 
a.) Fungal taxa with higher relative abundance in the farm than non-farm rural homes in LUKAS1. 

Taxon 

 

Median 
proportion (%) 

 

Prevalence 
(%) 

Phylum Class Order Family Genus 

Non-
farm 
home 

Farm 
home 

Non-
farm 
home 

Farm 
home 

unidentified unidentified 
   

 0 0  12 46 

Zygomycota unidentified 
   

 0 0  4 27 

     
 

  
 

  
Ascomycota Sordariomycetes Microascales 

  
 0.04 0.26  83 99 

Ascomycota Leotiomycetes Thelebolales 
  

 0.01 0.05  63 88 

     
 

  
 

  
Ascomycota Dothideomycetes Pleosporales Pleosporaceae 

 
 0.53 1.07  100 100 

Ascomycota Sordariomycetes Microascales Microascaceae 
 

 0.03 0.24  78 99 

Ascomycota Leotiomycetes Thelebolales Other 
 

 0.01 0.04  62 87 

Ascomycota Lecanoromycetes Lecanorales Lecanoraceae 
 

 0.01 0.03  56 80 

Ascomycota Sordariomycetes Hypocreales Clavicipitaceae 
 

 0 0.02  48 71 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae 
 

 0 0.01  41 66 

Ascomycota Sordariomycetes Incertaesedis Apiosporaceae 
 

 0 0.01  32 60 

Ascomycota Eurotiomycetes Eurotiales Incertaesedis 
 

 0 0  13 49 

unidentified unidentified unidentified unidentified 
 

 0 0  12 46 

Ascomycota Lecanoromycetes Teloschistales Teloschistaceae 
 

 0 0  18 48 

Ascomycota Eurotiomycetes Onygenales Onygenaceae 
 

 0 0  4 33 

      
  

 
  

Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Aspergillus  1.37 5.73  100 100 

Ascomycota Sordariomycetes Hypocreales Incertaesedis Acremonium  0.28 0.47  96 100 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella  0.08 0.25  92 92 

Ascomycota Sordariomycetes Microascales Microascaceae unidentified  0.01 0.15  58 98 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Other  0.14 0.25  99 100 

Basidiomycota Microbotryomycetes Sporidiobolales Incertaesedis Sporobolomyces  0.05 0.16  98 98 

Ascomycota Sordariomycetes Hypocreales Incertaesedis Sarocladium  0.02 0.08  66 94 

Basidiomycota Microbotryomycetes Leucosporidiales Leucosporidiaceae Other  0.01 0.07  62 92 

Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Udeniomyces  0.05 0.09  85 97 

Ascomycota Leotiomycetes Thelebolales Other Other  0.01 0.04  62 87 

Ascomycota Sordariomycetes Sordariales Chaetomiaceae Humicola  0 0.03  45 75 

Ascomycota Sordariomycetes Sordariales Lasiosphaeriaceae Other  0 0.02  44 78 

Ascomycota Dothideomycetes Capnodiales Incertaesedis Pseudotaeniolina  0 0.02  30 69 

Ascomycota Lecanoromycetes Lecanorales Lecanoraceae unidentified  0 0.02  46 77 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Bipolaris  0 0.02  23 66 

Ascomycota Sordariomycetes Hypocreales Clavicipitaceae Claviceps  0 0.01  46 70 

Ascomycota Sordariomycetes Xylariales Incertaesedis Microdochium  0 0.01  23 66 

Ascomycota Sordariomycetes Microascales Microascaceae Wardomyces  0 0.01  22 66 

Ascomycota Dothideomycetes Capnodiales Mycosphaerellaceae Dissoconium  0 0.01  32 64 

Ascomycota Sordariomycetes Microascales Microascaceae Other  0 0.01  35 64 

Ascomycota Sordariomycetes Incertaesedis Apiosporaceae Arthrinium  0 0.01  32 60 

Ascomycota Sordariomycetes Sordariales Lasiosphaeriaceae unidentified  0 0.01  12 55 

Ascomycota Saccharomycetes Saccharomycetales Incertaesedis Wickerhamomyces  0 0  14 51 

Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Paecilomyces  0 0  5 51 

Ascomycota Eurotiomycetes Eurotiales Incertaesedis Thermomyces  0 0  13 49 

Ascomycota Dothideomycetes Pleosporales Sporormiaceae Preussia  0 0  10 45 

Ascomycota Lecanoromycetes Teloschistales Teloschistaceae Other  0 0  6 38 

unidentified unidentified unidentified unidentified unidentified  0 0  12 46 

Ascomycota Eurotiomycetes Onygenales Onygenaceae Chrysosporium  0 0  3 29 
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b.) Fungal taxa with lower relative abundance in the farm than non-farm rural homes in LUKAS1. 

Taxon 

 

Median 
proportion (%) 

 

Prevalence (%) 

Phylum Class Order Family Genus 

Non-
farm 
home 

Farm 
home 

Non-
farm 
home 

Farm   
home 

Other Other     0.81 0.41  100 100 

Basidiomycota Other 
    

0.30 0.12 
 

98 98 
Ascomycota Taphrinomycetes 

    
0.23 0.14 

 
100 98 

           
Ascomycota Eurotiomycetes Chaetothyriales 

   
1.37 0.66 

 
100 100 

Ascomycota Dothideomycetes Other 
   

0.83 0.31 
 

100 100 
Other Other Other 

   
0.81 0.41 

 
100 100 

Ascomycota Dothideomycetes Dothideales 
   

0.52 0.28 
 

100 100 
Basidiomycota Other Other 

   
0.30 0.12 

 
98 98 

Ascomycota Dothideomycetes Botryosphaeriales 
  

0.26 0.08 
 

96 95 
Ascomycota Leotiomycetes Other 

   
0.28 0.11 

 
98 97 

Basidiomycota Agaricomycetes Agaricales 
   

0.08 0.03 
 

94 94 
           
Ascomycota Dothideomycetes Capnodiales Other 

  
1.65 0.85 

 
100 98 

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae 
 

1.06 0.44 
 

100 100 
Ascomycota Dothideomycetes Other Other 

  
0.83 0.31 

 
100 100 

Other Other Other Other 
  

0.81 0.41 
 

100 100 
Ascomycota Dothideomycetes Pleosporales Montagnulaceae 

  
0.23 0.04 

 
90 82 

Basidiomycota Other Other Other 
  

0.30 0.12 
 

98 98 
Ascomycota Leotiomycetes Other Other 

  
0.28 0.11 

 
98 97 

Ascomycota Dothideomycetes Pleosporales Venturiaceae 
  

0.22 0.08 
 

93 97 
Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae 

  
0.18 0.06 

 
92 80 

Ascomycota Taphrinomycetes Taphrinales Taphrinaceae 
  

0.20 0.12 
 

100 98 
Ascomycota Dothideomycetes Dothideales Other 

  
0.08 0.01 

 
91 68 

Ascomycota Dothideomycetes Botryosphaeriales unidentified 
  

0.03 0.01 
 

82 67 
Ascomycota Lecanoromycetes Other Other 

  
0.02 0.01 

 
77 63 

Basidiomycota Tremellomycetes Cystofilobasidiales unidentified 
  

0.01 0.00 
 

73 35 
           
Ascomycota Dothideomycetes Capnodiales Other Other 

 
1.65 0.85 

 
100 98 

Ascomycota Dothideomycetes Other Other Other 
 

0.83 0.31 
 

100 100 
Other Other Other Other Other 

 
0.81 0.41 

 
100 100 

Ascomycota Dothideomycetes Pleosporales Montagnulaceae Other 
 

0.23 0.04 
 

90 82 
Basidiomycota Other Other Other Other 

 
0.30 0.12 

 
98 98 

Ascomycota Leotiomycetes Other Other Other 
 

0.28 0.11 
 

98 97 
Ascomycota Dothideomycetes Dothideales Dothioraceae Aureobasidium 

 
0.27 0.14 

 
100 100 

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Phaeococcomyces 0.22 0.09 
 

98 97 
Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae Pyrenochaetopsis 

 
0.18 0.06 

 
92 80 

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Exophiala 
 

0.18 0.06 
 

100 97 
Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae Dothiorella 

 
0.15 0.04 

 
81 82 

Ascomycota Dothideomycetes Pleosporales Venturiaceae Other 
 

0.16 0.06 
 

89 89 
Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Cladophialophor

a  
0.14 0.05 

 
98 93 

Basidiomycota Microbotryomycete
s 

Other Other Other 
 

0.10 0.03 
 

81 72 
Ascomycota Dothideomycetes Dothideales Other Other 

 
0.08 0.01 

 
91 68 

Ascomycota Taphrinomycetes Taphrinales Taphrinaceae Taphrina 
 

0.10 0.04 
 

94 90 
Ascomycota Dothideomycetes Capnodiales Mycosphaerellacea

e 
Other 

 
0.08 0.03 

 
87 85 

Ascomycota Dothideomycetes Pleosporales Venturiaceae Venturia 
 

0.05 0.02 
 

82 82 
Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae unidentified 

 
0.10 0.07 

 
97 94 

Ascomycota Leotiomycetes Helotiales Incertaesedis Cadophora 
 

0.06 0.03 
 

83 79 
Ascomycota Dothideomycetes Dothideales Dothioraceae unidentified 

 
0.03 0.00 

 
91 61 

Ascomycota Leotiomycetes Helotiales Phacidiaceae Phacidium 
 

0.03 0.01 
 

77 63 
Ascomycota Dothideomycetes Botryosphaeriales unidentified unidentified 

 
0.03 0.01 

 
82 67 

Ascomycota Lecanoromycetes Other Other Other 
 

0.02 0.01 
 

77 63 
Basidiomycota Tremellomycetes Cystofilobasidiales unidentified unidentified 

 
0.01 0.00 

 
73 35 

Ascomycota Taphrinomycetes Taphrinales Taphrinaceae Other 
 

0.01 0.00 
 

68 46 
Ascomycota Saccharomycetes Saccharomycetale

s 
Incertaesedis Cyberlindnera 

 
0.00 0.00 

 
46 28 
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Supplementary Table 4. The modelled effect of farm home -like indoor microbiota composition at 2 

months and asthma ever by 6 years of age or active asthma at 6 years of age.  

Predicted  
cohort 

Type of farm home-
like microbiota 

composition 

IP
a
 

 N-total  
%-asthma 

ever  
 Asthma ever 

 N-total  
%-asthma 

active 

 

Active asthma  

IQR / 
Tertile 

n % 
 

aOR
b 

(95% Cl) P -value 
 

n % 
 

aOR
 
(95% Cl) P-value 

LUKAS2 
non-farm 

Bacterial
c
 

presence-absence
 0.01 

 
164 19.5 

 
0.98 (0.94 -1.02) 0.22 

 
156 12.2 

 
0.98 (0.94 - 1.03) 0.44 

Bacterial 
relative abundance

 0.35 
 

164 19.5 
 

0.40 (0.19 - 0.82) 0.01 
 
156 12.2 

 
0.63 (0.27 - 1.44) 0.27 

Fungal 
presence-absence 

0.03 
 

157 19.1 
 

0.99 (0.92 - 1.07) 0.75 
 
149 11.4 

 
1.05 (0.96 - 1.14) 0.28 

Fungal 
relative abundance 

0.29 
 

157 19.1 
 

1.01 (0.55- 1.90) 0.96 
 
149 11.4 

 
1.28 (0.53 - 3.09) 0.58 

               

LUKAS 1 & 2 
non-farm 

Bacterial 
presence-absence 

0.01 
 

251 19.1 
 

0.96 (0.92 - 1.01) 0.12 
 
227 11.9 

 
0.98 (0.93 - 1.03) 0.39 

Bacterial 
relative abundance 

0.34 
 

251 19.1 
 

0.47 (0.27 - 0.81) 0.007 
 
227 11.9 

 
0.48 (0.23 - 0.98) 0.04 

Fungal 
presence-absence 

0.03 
 

244 18.9 
 

0.98 (0.93 - 1.04) 0.55 
 
220 11.4 

 
1.01 (0.95 - 1.08) 0.68 

Fungal 
relative abundance 

0.28 
 

244 18.9 
 

0.87 (0.55 - 1.38) 0.55 
 
220 11.4 

 
1.19 (0.63 - 2.27) 0.59 

LUKAS 1 & 2  
farm

d,e
 

Bacterial I
f
  37 10.8  1 

0.51 

 33 9.1    

presence-absence II  39 5.1  0.42 (0.07 - 2.55)  36 0  -
g
  

 III  35 11.4  1.23 (0.26 - 5.74)  32 9.4    

Bacterial 
relative abundance

h 2.74 
 

111 9.0  0.37 (0.10 - 1.33) 0.13
i
  101 5.9 

 
0.38 (0.11-1.30) 0.12

e,j
 

Fungal 
presence-absence 

0.08 
 

105 9.5  0.91 (0.71-1.16) 0.44  96 6.3 
 

0.88 (0.72 – 1.13) 0.29
e
 

Fungal 
relative abundance

h 0.62 
 

105 9.5  1.22 (0.38 – 3.90) 0.74  96 6.3 
 

1.81 (0.46 – 8.32) 0.35
e
 

LUKAS 1 & 2 
Bacterial 

relative abundance 
0.40 

 
362 16.0  0.47 (0.27 - 0.83) 0.009  328 10.1 

 
0.48 (0.23 - 0.99)

 
0.046 

a
Logistic regression analysis based adjusted odds ratios (aOR) presented per interquartile range (IQR) or in reference to 

the first tertile of predicted individual probability (IP) that the microbiota in the child’s home, predicted based on 
microbial community beta-diversity based modelling, represents more of a LUKAS1 farm than non-farm home. 

b
Unless 

specifically marked, all models adjusted for sex, maternal and paternal allergic disease, maternal smoking during 
pregnancy, number of older siblings and maternal education as well as cohort and living at a farm where relevant. P -
values are two-sided. 

c
Bacterial = bacterial/archaeal. 

d
These models were adjusted with maternal smoking during 

pregnancy as two category variable (yes/no) due to model instabilities with the three category variable accounting for 
cessation of smoking prior to pregnancy. 

e
Where marked, Firth’s penalized estimation was used, if maximum likelihood 

estimate did not exist. 
f
Continuous IP variable could not be used because the association with asthma was not linear. 

Comparison between tertiles with the first tertile as the reference (odds ratio = 1).
 g

Unable to calculate reliable adjusted 
or unadjusted estimates due to quasi-complete separation of data points. 

h
IP value was exponentially transformed 

because the variable was strongly skewed to the left but transferable to normal distribution. 
i
The asthma predisposing 

trend of non-farm like microbiota among farmers is statistically significant when analyzed as a dichotomous variable 
(FaRMI below vs above median in LUKAS1 and 2 farm homes); With Firth’s penalized maximum likelihood estimation 
aOR for asthma ever 6.93 (1.51 – 62.3); p=0.02; 

j
for active asthma this could not be estimated due to low number of 

cases.  
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Supplementary Table 5. Independence of the association between asthma and FaRMI (farm home -

like relative abundance of bacteria/archaea) in non-farm LUKAS homes on proxies of total bacterial 

exposure and potential confounders, including environmental determinants. 

Adjustments 

 n-total  
%-asthma ever  

 Effect of FaRMI on  
Asthma ever by 6 years 

 
n % 

 
aOR

a 
(95% Cl) per IQRFaRMI P-value 

None  260 18.8  0.51 (0.31 – 0.86) 0.011 

Basic adjustments
b
  251 19.1  0.47 (0.27 - 0.81) 0.007 

 
The basic adjustments + adjustment for:

 c
 

   

Atopic sensitization
d 

 192 20.3  0.47 (0.25 - 0.89) 0.020 

Amount of dust  251 19.1  0.52 (0.29 - 0.92) 0.024 

Bacterial richness  251 19.1  0.43 (0.21 - 0.87) 0.018 

Total bacterial concentration  251 19.1  0.45 (0.25 - 0.79) 0.005 

LPS10-16 / m
2
  246 19.5  0.49 (0.27 - 0.87) 0.015 

Endotoxin / m
2
  226 18.6  0.45 (0.25 - 0.81) 0.008 

Muramic acid / m
2
  236 17.8  0.56 (0.31 - 1.02) 0.059 

Indoors with outdoor shoes
e
  164 19.5  0.40 (0.19 - 0.85) 0.017 

Construction year  244 19.3  0.50 (0.28 - 0.88) 0.017 

Condensation on windows  244 19.3  0.47 (0.27 - 0.83) 0.009 

Fish tank  245 18.8  0.44 (0.25 - 0.78) 0.005 
a
Logistic regression analysis based adjusted odds ratios (aOR) presented per interquartile range of FaRMI (0.34). 

b
Basic 

adjustments include sex, cohort, maternal and paternal allergic disease, maternal smoking during pregnancy, number of 
older siblings and maternal education and with the additional variables as indicated. All confounders tested are listed in 
the methods. P-values are two-sided. 

c
aOR for model with all adjustments in the same model 0.03 (0.001 - 0.84); 

P=0.04, n=92, 15.2% with asthma. However, the model includes quasi-complete separation of data points and thus 
result is based on the last maximum likelihood iteration, unadjusted OR within this subpopulation 0.51 (0.20 – 1.27); 
P=0.15. 

d
Atopic sensitization defined by presence of any specific IgE ≥ 3.5kU/L at 6 years. 

e
Data collected from 1 year 

questionnaire from LUKAS2 only.  
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Supplementary Table 6. Determinants associated with farm home –like relative abundance of 

bacteria/archaea (FaRMI) in LUKAS non-farm homes.a 

Determinant Class n  
%-With 

FaRMI>50% 
 P-value

b 

Siblings (older) None 103  34.0  
 

 1 96  24.0   

 2 or more 79  41.8  0.04 

       Construction year Before 1970 58  44.8  
 

 1970-1989 103  35.0   

 After 1989 100  25.0  0.04 

       
Condensation on windows No 194  28.9   

 Yes, interior 
window 

56  42.9  
 

 Yes, exterior 
window 

11  63.6  0.01 

Having a fish tank  No 253  30.4   

 Yes 19  57.9  0.01 

       
Walking indoors with outdoor shoes

c 
Almost never 128  28.1  

 
 Sometimes /often 44  47.7  0.02 

 Missing (LUKAS1) 214     
a
Full list of potential determinants tested listed in the methods section,

 b
Two-sided p-value from a chi-square test, not 

corrected for multiple testing, 
c
from 1 year questionnaire and LUKAS2 only. 
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Supplementary Table 7. The modelled effect of farm home -like indoor microbiota composition as 

defined by random forest scoring based Farm Resembling Microbiota Index (FaRMI) at 2 months 

and asthma ever by 6 years of age.  

Predicted  
cohort 

N-total  
%-asthma ever 

 IP
a
 

 Effect of random forest based FaRMI on 
Asthma ever by 6 years  

n % 
 

IQR  aOR
b 

(95% Cl) P-value 
 

LUKAS2 non-farm 164 19.5 
 

0.08  0.71 (0.12 -1.07) 0.0995   

LUKAS 1 & 2 non-farm 251 19.1 
 

0.01  0.72 (0.51 - 1.03) 0.07   

LUKAS 1 & 2 362 16.0  0.40  0.78 (0.60 - 1.01) 0.06   
a
Logistic regression analysis based adjusted odds ratios (aOR) presented per interquartile range (IQR) of predicted 

individual probability (IP) that the microbiota in the child’s home, predicted based on Random decision forest 
represents more of a LUKAS1 farm than non-farm home. P-values are two-sided. 

b
All models adjusted for sex, maternal 

and paternal allergic disease, maternal smoking during pregnancy, number of older siblings and maternal education as 
well as cohort and living at a farm where relevant.  
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Supplementary Table 8. Thirty operational taxonomic units (OTUs) contributing most in the random 

decision forest based classification of the house dust microbiota compositions to farm or non-farm 

–like.  

Importance #OTU ID Taxonomy 

     0.01993 4331090 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_; s_ 

0.01775 112158 p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; 
g_Corynebacterium; s_ 0.01750 4404401 p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_Jeotgalicoccus; 
s_psychrophilus 0.01358 4317034 p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_5-7N15; s_ 

0.01253 517565 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_Facklamia; s_ 

0.01156 4474641 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_; s_ 

0.01143 295070 p_Firmicutes; c_Clostridia; o_Clostridiales; f_; g_; s_ 

0.01138 310510 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Clostridiaceae; g_Clostridium; s_ 

0.01130 722376 p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; 
g_Corynebacterium; s_ 0.01083 347529 p_Firmicutes; c_Bacilli; o_Turicibacterales; f_Turicibacteraceae; g_Turicibacter; s_ 

0.01003 1505939 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Carnobacteriaceae; g_Trichococcus; s_ 

0.00994 1142110 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Peptostreptococcaceae; g_; s_ 

0.00981 277352 p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Moraxellaceae; 
g_Psychrobacter; s_ 0.00889 290588 p_Firmicutes; c_Bacilli; o_Bacillales; f_Planococcaceae 

0.00872 4339901 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_; s_ 

0.00845 359533 p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; 
g_Corynebacterium; s_ 0.00823 4324041 p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_RF16; g_; s_ 

0.00790 4306004 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_; s_ 

0.00787 2459569 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_; s_ 

0.00758 310786 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_Ruminococcus; s_ 

0.00746 4395530 p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_5-7N15; s_ 

0.00639 180060 p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; 
f_Pseudomonadaceae; g_Pseudomonas; s_ 0.00636 348622 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Dorea; s_ 

0.00628 161687 
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Dermabacteraceae; 
g_Brachybacterium; s_conglomeratum 

0.00627 720093 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_; s_ 

0.00626 353194 p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Rikenellaceae; g_; s_ 

0.00615 4482376 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Carnobacteriaceae; g_Trichococcus; s_ 

0.00605 4387469 p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_; s_ 

0.00605 519367 p_Bacteroidetes; c_Flavobacteriia; o_Flavobacteriales; f_Flavobacteriaceae; g_; s_ 

0.00601 518065 p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; 
g_Corynebacterium; s_ p=phylum, c=class, o=order, f=family, g=genus, s=species 
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Supplementary Table 9. Generalized Unifrac distance of the bacterial microbiota in GABRIELA and 

LUKAS farm (nGABRIELA=399, nLUKAS=116) and non-farm homes (nGABRIELA=632, nLUKAS=278) from the 

microbiota in the GABRIELA animal shed dust samples (n=50). 

UniFrac distance 
metrics Cohort 

Living on 
a farm 

Median 
Interquartile 

range 
p-value

a
 

Unweighted
b 

GABRIELA No 0.87 (0.86-0.88) 
1.11E-87 

  Yes 0.83 (0.81-0.86) 

 LUKAS No 0.92 (0.91-0.93) 
9.85E-29 

  Yes 0.89 (0.87-0.90) 

Weighted
c 

GABRIELA No 0.48 (0.45-0.52) 
3.62E-32 

  Yes 0.44 (0.41-0.48) 

 LUKAS No 0.51 (0.47-0.55) 
9.81E-12 

  Yes 0.46 (0.44-0.50) 
a
Continuity corrected two-sided p-value from Wilcoxon test comparing differences in UniFrac distance  

between animal shed microbiota and microbiota from farm or non-farm home. 
b
Generalized  

UniFrac unweighted (α=0), or 
c
weighted for relative abundance (α=1). 
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Supplementary Table 10. Selected taxa -based models of a) LUKAS1 (FaRMI) and b) GABRIELA 

(FaRMIGABRIELA) farm home –like bacterial relative abundance. Taxa were entered into the 

generalized linear models (GLM) based on significance level until minimum predicted residual error 

sum of squares (PRESS) was reached using 10-fold cross validation.ref 60 The taxonomic level 

included in the model is bolded. The taxa are presented in the order they were included in the 

model. The few taxa explaining most of the variance in the models are highlighted with orange to 

indicate positive and with blue to indicated negative association with FaRMI.  

 
a.) Taxa best predicting the LUKAS1 farm home -like relative abundance defining FaRM-index. 

Step 
  

Phylum 
  

Class 
  

Order 
  

Family 
  

Genus Estimate 

Partial 
adjusted 
R-square 

0 Intercept - - - - 1.1E-01 0.000 

1 Firmicutes Bacilli Lactobacillales Streptococcaceae - -2.9E-03 0.530 

2 Actinobacteria - - - - 3.4E-03 0.282 

3 Bacteroidetes Sphingobacteriia - - - 5.4E-06 0.084 

4 Proteobacteria Alphaproteobacteria - - - 8.3E-04 0.026 

5 Bacteroidetes - - - - 1.7E-03 0.016 

6 Cyanobacteria - - - - 8.9E-04 0.014 

7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae - 1.1E-03 0.005 

8 Bacteroidetes Flavobacteriia Flavobacteriales [Weeksellaceae] Chryseobacterium 3.8E-04 0.004 

9 Firmicutes Bacilli Bacillales Planococcaceae - 6.6E-05 0.003 

10 Firmicutes Bacilli - - - -1.7E-03 0.002 

11 Proteobacteria Betaproteobacteria Rhodocyclales - - 6.1E-04 0.002 

12 Unassigned         -8.0E-04 0.001 

13 Actinobacteria  Actinobacteria  Bifidobacteriales  Bifidobacteriaceae Gardnerella -4.4E-04 0.001 

14 Cyanobacteria Chloroplast Chlorophyta - - 6.9E-04 0.001 

15 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae - 2.0E-04 0.001 

16 Firmicutes Bacilli Bacillales Listeriaceae - -7.4E-04 0.001 

17 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 4.0E-04 <0.001 

18 Proteobacteria Deltaproteobacteria Myxococcales Myxococcaceae Corallococcus 1.1E-03 <0.001 

19 Bacteroidetes Flavobacteriia Flavobacteriales [Weeksellaceae] Ornithobacterium 9.3E-04 <0.001 

20 Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae - -4.9E-04 <0.001 

21 Actinobacteria Actinobacteria Actinomycetales Micromonosporaceae Dactylosporangium 9.0E-04 <0.001 

22 Acidobacteria Acidobacteria-6 iii1-15 mb2424 - -1.1E-03 <0.001 

23 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Alcaligenes 5.9E-04 <0.001 

24 Proteobacteria Alphaproteobacteria unassigned unassigned unassigned -7.2E-04 <0.001 

25 Proteobacteria Alphaproteobacteria Caulobacterales - - 6.6E-04 <0.001 

26 Actinobacteria Actinobacteria Actinomycetales Dermabacteraceae Brachybacterium 3.2E-04 <0.001 

27 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas -4.0E-04 <0.001 

28 Gemmatimonadetes Gemm-3 - - - -6.6E-04 <0.001 

29 Proteobacteria Betaproteobacteria Methylophilales - - 4.6E-04 <0.001 

30 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae - -3.8E-04 <0.001 

31 Proteobacteria Betaproteobacteria - - - -5.4E-04 <0.001 

32 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae - 3.8E-04 <0.001 

33 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnobacterium -4.1E-04 <0.001 

34 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Winogradskyella 6.5E-04 <0.001 

35 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 3.4E-04 <0.001 

36 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae - 3.6E-04 <0.001 

37 Bacteroidetes Bacteroidia Bacteroidales [Odoribacteraceae] Butyricimonas 7.1E-04 <0.001 

38 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Dickeya -1.1E-03 <0.001 

39 Actinobacteria Actinobacteria Actinomycetales Yaniellaceae - 4.7E-04 <0.001 

40 Firmicutes Bacilli Bacillales Staphylococcaceae - 2.0E-04 <0.001 

41 Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Eggerthella -5.6E-04 <0.001 

42 Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae Flavihumibacter 1.0E-03 <0.001 

43 Acidobacteria Solibacteres Solibacterales Solibacteraceae - 4.3E-04 <0.001 

44 [Thermi] Deinococci Deinococcales Trueperaceae - -2.2E-04 <0.001 

45 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Comamonas 2.3E-04 <0.001 
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b.) Taxa best predicting the GABRIELA farm home -like relative abundance defining FaRMIGABRIELA. 

Step 

          

Estimate 

Partial 
adjusted 
R-square Phylum Class Order Family Genus 

0 Intercept - - - - -2.86E-02 0.000 

1 Bacteroidetes Sphingobacteriia - - - 5.09E-04 0.374 

2 Firmicutes Bacilli Lactobacillales Streptococcaceae - -1.68E-03 0.201 

3 Firmicutes Clostridia - - - 1.76E-03 0.118 

4 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae - 3.64E-04 0.076 

5 Actinobacteria Actinobacteria Actinomycetales - - -7.99E-04 0.033 

6 Proteobacteria Alphaproteobacteria - - - 9.67E-04 0.029 

7 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter 1.63E-04 0.016 

8 Proteobacteria Gammaproteobacteria Pseudomonadales - - 4.02E-04 0.011 

9 Cyanobacteria - - - - 1.85E-03 0.022 

10 Proteobacteria Gammaproteobacteria Enterobacteriales - - 2.28E-04 0.009 

11 Bacteroidetes Cytophagia Cytophagales Cytophagaceae - 7.39E-04 0.006 

12 Tenericutes - - - - 2.71E-04 0.006 

13 Proteobacteria - - - - 1.54E-03 0.005 

14 Firmicutes Bacilli Bacillales Staphylococcaceae Jeotgalicoccus 3.70E-04 0.005 

15 Firmicutes Clostridia Clostridiales [Mogibacteriaceae] - 2.73E-04 0.003 

16 Bacteroidetes - - - - 3.24E-04 0.002 

17 Firmicutes Bacilli Bacillales - - 2.06E-03 0.002 

18 Firmicutes Bacilli - - - -1.47E-03 0.002 

19 Firmicutes Bacilli Lactobacillales Lactobacillaceae - 2.69E-04 0.002 

20 Proteobacteria Gammaproteobacteria Pasteurellales - - -5.27E-04 0.002 

21 Actinobacteria - - - - -1.18E-03 0.002 

22 Firmicutes Bacilli Lactobacillales Aerococcaceae Facklamia 3.66E-04 0.002 

23 Firmicutes Bacilli Bacillales Staphylococcaceae - -1.33E-03 0.002 

24 Cyanobacteria Nostocophycideae Nostocales Nostocaceae - 2.47E-04 0.001 

25 Bacteroidetes Bacteroidia Bacteroidales Porphyrmonadaceae Paludibacter 2.58E-04 0.001 

26 Unassigned         3.74E-04 <0.001 

27 Firmicutes Bacilli Other     -2.30E-04 <0.001 

28 Bacteroidetes Bacteroidia Bacteroidales Porphyrmonadaceae Porphyromonas 8.36E-04 <0.001 

29 Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 3.20E-04 <0.001 

30 Firmicutes Clostridia Clostridiales Lachnospiraceae Oribacterium 1.78E-04 <0.001 

31 Proteobacteria Alphaproteobacteria Rickettsiales - - -1.03E-03 <0.001 

32 Proteobacteria Alphaproteobacteria Rickettsiales mitochondria unassigned 7.58E-04 <0.001 

33 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 2.82E-04 <0.001 

34 Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae - 3.68E-04 <0.001 

35 Tenericutes Mollicutes Mycoplasmatales Mycoplasmataceae - 4.70E-04 <0.001 

36 Euryarchaeota - - - - 2.59E-04 <0.001 

37 Actinobacteria Thermoleophilia - - - 3.69E-04 <0.001 

38 Bacteroidetes Flavobacteriia Flavobacteriales [Weeksellaceae]   2.02E-04 <0.001 

39 Firmicutes - - - - 6.04E-04 <0.001 

40 Firmicutes Clostridia Clostridiales Veillonellaceae Mitsuokella -2.66E-04 <0.001 

41 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae - -5.34E-04 <0.001 

42 Actinobacteria Actinobacteria - - - 3.06E-03 <0.001 

43 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Agromyces 2.12E-04 <0.001 

44 Proteobacteria Epsilonproteobacteria Campylobacterales Helicobacteraceae Wolinella -4.50E-04 <0.001 

45 Proteobacteria Gammaproteobacteria Xanthomonadales - - 2.17E-04 <0.001 

46 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas -1.72E-04 <0.001 
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Supplementary Table 11. The modelled effects of LUKAS1 and GABRIELA farm home -like bacterial 

composition on asthma development in non-farm homes of each cohort. The farm home –like 

composition defined by the selected taxa-based models of FaRMI and FaRMIGABRIELA, respectively. 

The primary replication from LUKAS1 to GABRIELA is indicated with bold font. 

Derivation 
cohort 

Predicted cohort 
N-total 

%-Asthmatics 

 Taxa-based 
models of FaRMI/ 

FaRMI GABRIELA
 

 
Doctor diagnosed asthma by 

6 to 12 years of agea 

n % IQR aORb (95% Cl) P-value 

LUKAS1 LUKAS non-farm 244 19.3  0.32  0.48 (0.28 - 0.80) 0.005 

  GABRIELA non-farm 603 12.3  0.27  0.65 (0.46 - 0.91) 0.01 

GABRIELA  GABRIELA non-farm 603 12.3  0.21  0.75 (0.55 - 1.02) 0.07 

  LUKAS non-farm 244 19.3  0.25  0.65 (0.41 - 1.05) 0.08 
a
In LUKAS1 the indoor microbiota composition was determined at 2 months and asthma refers to diagnosis by the 6 

years of age (prospective design), in GABRIELA the microbiota composition was determined at 6 to 12 years of age and 
asthma refers to diagnosis by the respective time point (cross-sectional design). 

b
Logistic regression analysis based 

adjusted odds ratios (aOR) presented per interquartile range (IQR) of selected taxa-based models of FaRMI or 
FaRMIGABRIELA. All models adjusted for sex, maternal and paternal allergic disease (LUKAS) or first degree relative with 
allergic disease (GABRIELA), maternal smoking during pregnancy, number of older siblings, maternal education and age 
(GABRIELA). P-values are two-sided.
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Supplementary Table 12. Association between farm home -like relative abundance of 

bacteria/archaea (FaRMI) in LUKAS non-farm homes at 2 months and atopic sensitization at 6 years 

or asthma ever by 6 years stratifieda by atopic sensitizationb,c.  

Health outcome 

N-total  
%-sensitized 
/ -asthmatic 

  
Risk of adverse outcome 

  

n %   IQR aOR
d 

(95% Cl) P-value 

Sensitized to any allergen
b
  195 29.7 

 
0.35 1.07 (0.64 - 1.80) 0.80 

Sensitized to inhaled allergens
c
 195 31.8 

 
0.35 1.11 (0.64 - 1.92) 0.72 

Asthma in non-sensitized 134 18.7 
 

0.33 0.68 (0.32-1.55) 0.31 

Asthma in sensitized
b 

58 24.1 
 

0.41 0.22 (0.05-1.02) 0.05 
aP-value for interaction term FaRMI*sensitized to any allergen was 0.19. Atopic sensitization was defined by 

concentration of bany or cinhalant allergen specific IgE ≥3.5kU/L in venous blood at 6 years. daOR=logistic 
regression analysis based adjusted odds ratios presented per interquartile range (IQR) of FaRMI for the 
indicated adverse health outcome. All models adjusted for sex, cohort, maternal and paternal allergic 
disease, maternal smoking during pregnancy, number of older siblings and maternal education. P-values are 
two-sided. 
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Supplementary Table 13. Example of differencesa in the relative frequency of PICRUStref 57-predicted 

genes (KEGG orthologs) between LUKAS non-farm homes with more farm home than non-farm 

home–like indoor microbiota (FaRMI>50%) and those with more non-farm home than farm home-

like indoor microbiota (FaRMI<50%). Top 50 significant (two-sided p<0.05) differences selected 

based on magnitude of the relative difference in means. Blue color indicates negative and orange 

positive association with FaRMI. The gene orthologs are underlined where PubMed literature search 

for the gene product indicated association with bacterial virulence mechanism including secretion 

systems, which pathogenic bacteria may utilize in translocation of virulence factors into host 

cells.refs 28,29  

KEGG Ortholog 

Relative 
difference 
 in means 

(%)b 

Mean relative 
frequency (%) Corrected 

P-valuec 
FaRMI<50% FaRMI>50% 

K00078: dihydrodiol dehydrogenase / D-xylose 1-dehydrogenase (NADP)  -200 4.79E-06 0 4.2E-06 
K02137: F-type H+-transporting ATPase oligomycin sensitivity conferral protein [EC:3.6.3.14] -200 2.66E-06 0 3.2E-02 
K04049: type III secretion protein SctBref 28 (reference for all type III secretion system associated proteins) -200 2.26E-06 0 9.1E-03 
K04050: type III secretion protein SctE -200 2.26E-06 0 8.8E-03 
K04051: type III secretion protein SctG -200 2.26E-06 0 9.0E-03 
K04052: type III secretion protein SctH -200 2.26E-06 0 9.0E-03 
K04057: type III secretion protein SctP -200 2.26E-06 0 8.9E-03 
K04060: type III secretion protein SctY -200 2.26E-06 0 8.9E-03 
K06125: 4-hydroxybenzoate hexaprenyltransferase [EC:2.5.1.-] -200 2.66E-06 0 3.2E-02 
K06931: None 200 0 8.00E-07 2.4E-02 
K08658: prenyl protein peptidase [EC:3.4.22.-] 200 0 9.51E-06 3.0E-24 
K12688: autotransporter serine protease [EC:3.4.21.-] -200 2.37E-06 0 1.3E-02 
K00213: 7-dehydrocholesterol reductase [EC:1.3.1.21] 198 1.13E-07 2.06E-05 8.1E-34 
K00630: glycerol-3-phosphate O-acyltransferase [EC:2.3.1.15] 198 1.13E-07 2.06E-05 1.6E-33 
K00654: serine palmitoyltransferase [EC:2.3.1.50] 174 2.54E-07 3.58E-06 5.9E-07 
K00960: DNA-directed RNA polymerase [EC:2.7.7.6] -174 1.15E-05 8.15E-07 1.4E-09 
K03955: NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex 1 [EC:1.6.5.3 1.6.99.3] -169 4.40E-06 3.66E-07 7.5E-03 
K03278: UDP-D-galactose:(glucosyl)LPS alpha-1,3-D-galactosyltransferase [EC:2.4.1.44] -163 2.33E-05 2.35E-06 1.3E-02 
K07805: putative membrane protein PagD -163 2.33E-05 2.35E-06 1.3E-02 
K08477: outer membrane protease E [EC:3.4.21.-] -163 2.33E-05 2.35E-06 1.3E-02 
K11023: pertussis toxin subunit 1 [EC:2.4.2.-]ref 30 -163 2.33E-05 2.35E-06 1.3E-02 
K11191: PTS system, N-acetylmuramic acid-specific IIB component [EC:2.7.1.69] -163 2.33E-05 2.35E-06 1.3E-02 
K13085: phosphatidylinositol-4,5-bisphosphate 4-phosphatase [EC:3.1.3.78] -163 2.33E-05 2.35E-06 1.4E-02 
K13284: invasin Aref 31 (reference for all invasins) -163 2.33E-05 2.35E-06 1.3E-02 
K13286: invasin C -163 2.33E-05 2.35E-06 1.3E-02 
K13450: phosphothreonine lyase [EC:4.2.3.-]ref 32 -163 2.33E-05 2.35E-06 1.3E-02 
K13739: secreted effector protein SopDref 33 -163 2.33E-05 2.35E-06 1.3E-02 
K13740: secreted effector protein SptPref 31 -163 2.33E-05 2.35E-06 1.3E-02 
K13741: guanine nucleotide exchange factor SopEref 31 -161 2.73E-05 2.91E-06 4.1E-03 
K12227: TraL protein -156 8.67E-06 1.06E-06 6.5E-05 
K08599: YopT peptidase [EC:3.4.22.-]ref 34 -148 3.80E-06 5.62E-07 1.7E-02 
K13318: dTDP-4-keto-6-deoxy-L-hexose 4-reductase 148 1.74E-05 1.17E-04 4.6E-02 
K12228: TrbB proteinref 29 (reference for all the Type IV secretion system associated proteins) -148 8.79E-06 1.32E-06 1.1E-04 
K07538: 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase [EC:1.1.1.-] 141 2.90E-06 1.69E-05 3.4E-09 
K03280: UDP-N-acetylglucosamine:(glucosyl)LPS α-1,2-N-acetylglucosaminyltransferase 
[EC:2.4.1.56] -138 2.76E-05 5.07E-06 8.7E-03 
K09953: lipid A 3-O-deacylaseref 35 -138 2.76E-05 5.07E-06 8.9E-03 
K11735: GABA permease -133 2.87E-05 5.76E-06 8.8E-03 
K05924: None -131 2.90E-06 6.07E-07 1.7E-02 
K12203: defect in organelle trafficking protein DotBref 29  -129 1.31E-05 2.84E-06 2.2E-06 
K12204: defect in organelle trafficking protein DotC -129 1.31E-05 2.84E-06 2.5E-06 
K12205: defect in organelle trafficking protein DotD -129 1.31E-05 2.84E-06 1.9E-06 
K00188: 2-oxoisovalerate ferredoxin oxidoreductase, delta subunit [EC:1.2.7.7] 128 6.69E-07 3.02E-06 1.9E-02 
K00319: methylenetetrahydromethanopterin dehydrogenase [EC:1.5.99.9] 128 6.69E-07 3.02E-06 1.9E-02 
K00440: coenzyme F420 hydrogenase alpha subunit [EC:1.12.98.1] 128 6.69E-07 3.02E-06 1.8E-02 
K00442: coenzyme F420 hydrogenase delta subunit 128 6.69E-07 3.02E-06 1.8E-02 
K00443: coenzyme F420 hydrogenase gamma subunit [EC:1.12.98.1] 128 6.69E-07 3.02E-06 2.0E-02 
K00578: tetrahydromethanopterin S-methyltransferase subunit B [EC:2.1.1.86] 128 6.69E-07 3.02E-06 2.0E-02 
K00579: tetrahydromethanopterin S-methyltransferase subunit C [EC:2.1.1.86] 128 6.69E-07 3.02E-06 2.0E-02 
K00580: tetrahydromethanopterin S-methyltransferase subunit D [EC:2.1.1.86] 128 6.69E-07 3.02E-06 1.8E-02 
K00581: tetrahydromethanopterin S-methyltransferase subunit E [EC:2.1.1.86] 128 6.69E-07 3.02E-06 2.0E-02 
K00582: tetrahydromethanopterin S-methyltransferase subunit F [EC:2.1.1.86] 128 6.69E-07 3.02E-06 2.0E-02 

a
From the predicted LUKAS non-farm home dust bacterial/archaeal metagenome, nearly half (48%) of the 6909 genes 

(KEGG orthologs) were present in significantly (p<0.05) different proportions between homes with more farm home 
than non-farm home–like indoor microbiota (FaRMI>50%) and those with more non-farm home than farm home-like 
indoor microbiota (FaRMI<50%). 

b
Difference between means as a percentage of the mean of the means of the two 

groups. 
c
White’s non-parametric two-sided t-test with Benjamini-Hochberg false discovery rate.  
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Supplementary table 14. Antibodies used for studying the expression of inhibitory receptors on 

blood dendritic cells (adapted from Martikainen et al., 2015 ref 49).  

a
Alias BDCA-1,

b
alias BDCA-2,

c
alias CD85d, 

d
Camarillo, CA, USA, 

e
San Diego, CA, USA, 

f
Bergisch Gladbach, Germany, 

g
San 

Diego, CA, USA. 
  

Antibody Fluorochrome Cellular target / usage Clone Isotype Manufacturer 

CD14 PE-Cy5.5 monocytes TüK4 Mouse IgG2a Invitrogen
d
  

CD19 PE-Cy5.5 B cells SJ25-C1 Mouse IgG1 Invitrogen 
CD11c PE-Cy7 mDC1 and mDC2  3.9 Mouse IgG1 κ eBioscience

e
  

CD1c
a
 APC mDC1  AD5-8E7 Mouse IgG2a Miltenyi Biotec

f
  

CD303
b
 PE pDC  AC144 Mouse IgG1 Miltenyi Biotec  

ILT4
c
 FITC tolerogenic potential 27D6 Rat IgM eBioscience 

ILT3 Biotin tolerogenic potential ZM4.1 Mouse IgG1, κ Biolegend
g
  

IgG1  FITC isotype control X40 Mouse IgG1, κ BD Biosciences 
Rat IgM FITC isotype control eBRM Rat IgM k eBioscience 
IgG1 biotin isotype control MOPC-21 Mouse IgG1, κ Biolegend 
IgG1 biotin isotype control P3.6.2.8.1 Mouse IgG1, κ eBioscience 
Streptavidin APC-

eFluor780 
secondary antibody for biotin-
conjugated antibodies 

-   -  eBioscience 
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Supplementary table 15. QIITA IDs for studies used in the source tracking analysis. 

QIITA ID Study title 

Soil microbiota 

ID 619 Neon soils  

ID 103 
Pyrosequencing Based Assessment of Soil pH as a Predictor of Soil Bacterial Community 
Structure at the Continental Scale 

ID 1578 Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils  
ID 990 Spatial scale drives patterns in soil bacterial diversity.  

ID 104 
Soil bacterial diversity in the Arctic is not fundamentally different from that found in 
other biomes  

ID 1024 The Soil Microbiome Influences Grapevine Associated Microbiota MiSeq 
ID 928 Examining the global distribution of dominant archaeal populations in soil  
ID 94 Soil bacterial and fungal communities across a pH gradient in an arable soil  

Human microbiota: 

ID 449 Bacterial community variation in human body habitats across space and time  
ID 232 Forensic identification using skin bacterial communities - keyboard 
ID 850 Human gut microbiome differentiation viewed across cultures, ages and families illumina  

ID 1928 Structure, function and diversity of the healthy human microbiome (V35)  

Bovine microbiota:  

ID 1621 Time series to determine the effect of Monensin on microbial hindgut bacterial composition  

 
 


