84 research outputs found
Hydraulic suppression of basal glacier melt in sill fjords
Using a conceptual model, we examine how hydraulically controlled exchange flows in silled fjords affect the relationship between the basal glacier melt and the features of warm intermediate Atlantic Water (AW) outside the fjords. We show that an exchange flow can be forced to transit into the hydraulic regime if the AW interface height decreases, the AW temperature increases, or the production of glacially modified water is boosted by subglacial discharge. In the hydraulic regime, the heat transport across the sill becomes a rate-limiting factor for the basal melt, which is suppressed. An interplay between processes near the ice–ocean boundary and the hydraulically controlled exchange flow determines the melt dynamics, and the sensitivity of the basal melt to changes in the AW temperature is reduced. The model results are discussed in relation to observations from the Petermann, Ryder, and 79∘ N glaciers in northern Greenland.</p
On the existence of stable seasonally varying Arctic sea ice in simple models
Within the framework of lower order thermodynamic theories for the climatic
evolution of Arctic sea ice we isolate the conditions required for the
existence of stable seasonally-varying solutions, in which ice forms each
winter and melts away each summer. This is done by constructing a two-season
model from the continuously evolving theory of Eisenman and Wettlaufer (2009)
and showing that seasonally-varying states are unstable under constant annual
average short-wave radiative forcing. However, dividing the summer season into
two intervals (ice covered and ice free) provides sufficient freedom to
stabilize seasonal ice. Simple perturbation theory shows that the condition for
stability is determined by when the ice vanishes in summer and hence the
relative magnitudes of the summer heat flux over the ocean versus over the ice.
This scenario is examined within the context of greenhouse gas warming, as a
function of which stability conditions are discerned.Comment: 11 pages, 6 figures, 1 tabl
Acoustic mapping of mixed layer depth
The ocean surface mixed layer is a nearly universal feature of the world oceans. Variations in the depth of the mixed layer (MLD) influences the exchange of heat, fresh water (through evaporation), and gases between the atmosphere and the ocean and constitutes one of the major factors controlling ocean primary production as it affects the vertical distribution of biological and chemical components in near-surface waters. Direct observations of the MLD are traditionally made by means of conductivity, temperature, and depth (CTD) casts. However, CTD instrument deployment limits the observation of temporal and spatial variability in the MLD. Here, we present an alternative method in which acoustic mapping of the MLD is done remotely by means of commercially available ship-mounted echo sounders. The method is shown to be highly accurate when the MLD is well defined and biological scattering does not dominate the acoustic returns. These prerequisites are often met in the open ocean and it is shown that the method is successful in 95% of data collected in the central Arctic Ocean. The primary advantages of acoustically mapping the MLD over CTD measurements are (1) considerably higher temporal and horizontal resolutions and (2) potentially larger spatial coverage
Recommended from our members
Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland
Petermann Fjord is a deep (>1000 m) fjord that incises the coastline of north-west Greenland and was carved by an expanded Petermann Glacier, one of the six largest outlet glaciers draining the modern Greenland Ice Sheet (GrIS). Between 5 and 70 m of unconsolidated glacigenic material infills in the fjord and adjacent Nares Strait, deposited as the Petermann and Nares Strait ice streams retreated through the area after the Last Glacial Maximum. We have investigated the deglacial deposits using seismic stratigraphic techniques and have correlated our results with high-resolution bathymetric data and core lithofacies. We identify six seismo-acoustic facies in more than 3500 line kilometres of sub-bottom and seismic-reflection profiles throughout the fjord, Hall Basin and Kennedy Channel. Seismo-acoustic facies relate to bedrock or till surfaces (Facies I), subglacial deposition (Facies II), deposition from meltwater plumes and icebergs in quiescent glacimarine conditions (Facies III, IV), deposition at grounded ice margins during stillstands in retreat (grounding-zone wedges; Facies V) and the redeposition of material downslope (Facies IV). These sediment units represent the total volume of glacial sediment delivered to the mapped marine environment during retreat. We calculate a glacial sediment flux for the former Petermann ice stream as 1080–1420 m3 a−1 per metre of ice stream width and an average deglacial erosion rate for the basin of 0.29–0.34 mm a−1. Our deglacial erosion rates are consistent with results from Antarctic Peninsula fjord systems but are several times lower than values for other modern GrIS catchments. This difference is attributed to fact that large volumes of surface water do not access the bed in the Petermann system, and we conclude that glacial erosion is limited to areas overridden by streaming ice in this large outlet glacier setting. Erosion rates are also presented for two phases of ice retreat and confirm that there is significant variation in rates over a glacial–deglacial transition. Our new glacial sediment fluxes and erosion rates show that the Petermann ice stream was approximately as efficient as the palaeo-Jakobshavn Isbræ at eroding, transporting and delivering sediment to its margin during early deglaciation
Practical guidelines and recent advances in the Itrax XRF core-scanning procedure
XRF core scanning has evolved to become a standard analytical technique for the rapid assessment of elemental, density and textural variations in a wide range of sediments and other materials, with applications ranging from palaeoceanography, paleoclimatology, geology, and environmental forensics to environmental protection. In general, scanning provides rapid, non-destructive acquisition of elemental and textural variations at sub-millimetre resolution for a wide range of materials. Numerous procedural adaptations have been developed for the growing number of applications, such as analyses of unconsolidated, water-rich sediments, powdered soil samples, or resin bags. Here, practical expertise and guidance from the Itrax community, gained over 15 years, is presented that should provide insights for new and experienced users
Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core
Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 degrees C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 degrees C global average warming target of the recent COP21 Paris climate agreement
Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean
Author Posting. © Nature Publishing Group, 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 453 (2008): 1236-1238, doi:10.1038/nature07075.Roughly 60% of the Earth’s outer surface is comprised of oceanic crust formed by volcanic
processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic
terrain has been visually surveyed and/or sampled, the available evidence suggests that
explosive eruptions are rare on MORs, particularly at depths below the critical point for
steam (3000 m). A pyroclastic deposit has never been observed on the seafloor below 3000
m, presumably because the volatile content of mid-ocean ridge basalts is generally too low
to produce the gas fractions required to fragment a magma at such high hydrostatic
pressure. We employed new deep submergence technologies during an International Polar
Year expedition to the Gakkel Ridge in the Arctic Basin at 85°E, to acquire the first-ever
photographic images of ‘zero-age’ volcanic terrain on this remote, ice-covered MOR. Our
imagery reveals that the axial valley at 4000 m water depth is blanketed with
unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele),
covering a large area greater than 10 km2. At least 13.5 wt% CO2 is required to fragment
magma at these depths, which is ~10x greater than the highest values measured to-date in
a MOR basalt. These observations raise important questions regarding the accumulation
and discharge of magmatic volatiles at ultra-slow spreading rates on the Gakkel Ridge (6-
14 mm yr-1, full-rate), and demonstrate that large-scale pyroclastic activity is possible
along even the deepest portions of the global MOR volcanic system.This research was
funded by the National Aeronautics and Space Administration, the National Science Foundation,
and the Woods Hole Oceanographic Institution
A Systematic Review of the Efficacy and Toxicity of Brachytherapy Boost Combined with External Beam Radiotherapy for Nonmetastatic Prostate Cancer
Context
The optimum use of brachytherapy (BT) combined with external beam radiotherapy (EBRT) for localised/locally advanced prostate cancer (PCa) remains uncertain.
Objective
To perform a systematic review to determine the benefits and harms of EBRT-BT.
Evidence acquisition
Ovid MEDLINE, Embase, and EBM Reviews—Cochrane Central Register of Controlled Trials databases were systematically searched for studies published between January 1, 2000 and June 7, 2022, according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Eligible studies compared low- or high-dose-rate EBRT-BT against EBRT ± androgen deprivation therapy (ADT) and/or radical prostatectomy (RP) ± postoperative radiotherapy (RP ± EBRT). The main outcomes were biochemical progression-free survival (bPFS), severe late genitourinary (GU)/gastrointestinal toxicity, metastasis-free survival (MFS), cancer-specific survival (CSS), and overall survival (OS), at/beyond 5 yr. Risk of bias was assessed and confounding assessment was performed. A meta-analysis was performed for randomised controlled trials (RCTs).
Evidence synthesis
Seventy-three studies were included (two RCTs, seven prospective studies, and 64 retrospective studies). Most studies included participants with intermediate-or high-risk PCa. Most studies, including both RCTs, used ADT with EBRT-BT. Generally, EBRT-BT was associated with improved bPFS compared with EBRT, but similar MFS, CSS, and OS. A meta-analysis of the two RCTs showed superior bPFS with EBRT-BT (estimated fixed-effect hazard ratio [HR] 0.54 [95% confidence interval {CI} 0.40–0.72], p < 0.001), with absolute improvements in bPFS at 5–6 yr of 4.9–16%. However, no difference was seen for MFS (HR 0.84 [95% CI 0.53–1.28], p = 0.4) or OS (HR 0.87 [95% CI 0.63–1.19], p = 0.4). Fewer studies examined RP ± EBRT. There is an increased risk of severe late GU toxicity, especially with low-dose-rate EBRT-BT, with some evidence of increased prevalence of severe GU toxicity at 5–6 yr of 6.4–7% across the two RCTs.
Conclusions
EBRT-BT can be considered for unfavourable intermediate/high-risk localised/locally advanced PCa in patients with good urinary function, although the strength of this recommendation based on the European Association of Urology guideline methodology is weak given that it is based on improvements in biochemical control.
Patient summary
We found good evidence that radiotherapy combined with brachytherapy keeps prostate cancer controlled for longer, but it could lead to worse urinary side effects than radiotherapy without brachytherapy, and its impact on cancer spread and patient survival is less clear
Impact of Epithelial Histological Types, Subtypes, and Growth Patterns on Oncological Outcomes for Patients with Nonmetastatic Prostate Cancer Treated with Curative Intent: A Systematic Review
Context
The optimal management for men with prostate cancer (PCa) with unconventional histology (UH) is unknown. The outcome for these cancers might be worse than for conventional PCa and so different approaches may be needed.
Objective
To compare oncological outcomes for conventional and UH PCa in men with localized disease treated with curative intent.
Evidence acquisition
A systematic review adhering to the Referred Reporting Items for Systematic Reviews and Meta-Analyses was prospectively registered on PROSPERO (CRD42022296013) was performed in July 2021.
Evidence synthesis
We screened 3651 manuscripts and identified 46 eligible studies (reporting on 1 871 814 men with conventional PCa and 6929 men with 10 different PCa UHs). Extraprostatic extension and lymph node metastases, but not positive margin rates, were more common with UH PCa than with conventional tumors. PCa cases with cribriform pattern, intraductal carcinoma, or ductal adenocarcinoma had higher rates of biochemical recurrence and metastases after radical prostatectomy than for conventional PCa cases. Lower cancer-specific survival rates were observed for mixed cribriform/intraductal and cribriform PCa. By contrast, pathological findings and oncological outcomes for mucinous and prostatic intraepithelial neoplasia (PIN)-like PCa were similar to those for conventional PCa. Limitations of this review include low-quality studies, a risk of reporting bias, and a scarcity of studies that included radiotherapy.
Conclusions
Intraductal, cribriform, and ductal UHs may have worse oncological outcomes than for conventional and mucinous or PIN-like PCa. Alternative treatment approaches need to be evaluated in men with these cancers.
Patient summary
We reviewed the literature to explore whether prostate cancers with unconventional growth patterns behave differently to conventional prostate cancers. We found that some unconventional growth patterns have worse outcomes, so we need to investigate if they need different treatments. Urologists should be aware of these growth patterns and their clinical impact
- …