32 research outputs found

    Hotspots of land use change in Europe

    Get PDF
    Die Zweitveröffentlichung der Publikation wurde durch Studierende des Projektseminars "Open Access Publizieren an der HU" im Sommersemester 2017 betreut. Nachgenutzt gemäß den CC-Bestimmungen des Lizenzgebers bzw. einer im Dokument selbst enthaltenen CC-Lizenz.Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions.Wecompiled and analyzed high-resolution, spatiallyexplicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes.Wefound a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.Peer Reviewe

    Techno-Ecological Synergy: A Framework for Sustainable Engineering

    Get PDF
    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed

    Mapping and modelling spatio-temporal dynamics of ecosystem services and land use change in the European Union

    Get PDF
    Verburg, P.H. [Promotor

    Bundles of ecosystem (dis)services and multifunctionality across European landscapes

    No full text
    International audienceWe present an assessment of the spatial pattern of ecosystem services (ES) associations across Europe based on models of eleven ES and one dis-service, mapped at the extent of twenty-seven Member States of the European Union (EU27) on a 1 km2 grid. We isolated three clusters of cells sharing common features in multi-ES supply associated with the main land-use-land-cover types such as forests and agricultural lands. Confronting these spatial patterns with biophysical and socio-economic drivers revealed two strong gradients structuring European ES bundles, climate and land use intensity. Variations in the diversity of ES bundles provided across administrative units (NUTS 2), quantified by the Shannon diversity index, tend to be higher in forested regions (e.g. SE Romania) and in the mosaic landscapes in the central EU27 (from eastern France to Austria). Lower diversity prevails in areas of homogeneous terrain and land use in north-western Europe (e.g. Western France). Our findings illustrate that ES trade-offs and bundles cannot be reduced to land use conflicts but also depend on climate and, for a specific bundle, to biodiversity

    Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility

    No full text
    Aim Many rare species are dispersal-limited; their colonization capacity can be impacted by land use and climate changes. Most ecological niche models predict the distribution of species under future climate and land use change scenarios without incorporating species-specific dispersal abilities. Here we investigate the effect of climate and land use change on low vagile species accounting for their dispersal capacity and define accessible areas in the future.Location Europe.Taxon Saproxylic beetles.Methods We used the current (2007-2012) occurrences of six endangered saproxylics to develop ecological niche models using current climate and land use conditions. We projected species distributions under four future climate and land use change scenarios to estimate their potential occurrences. Finally, accounting for species-specific dispersal, we limited their distributions to accessible areas in 2040-2050.Results Without accounting for dispersal abilities we found a strong and positive impact of climate change on the distribution of Cerambix cerdo, Cucujus cinnaberinus, Morimus funereus and Rosalia alpina and a positive effect of land use change on the distribution of Lucanus cervus and Osmoderma eremita. When species-specific dispersal was included, we found a strong and positive impact of land use change on the distribution of all the species. In this case climate change had a lower but positive effect on the distribution of C. cerdo, C. cinnaberinus, L. cervus and R. alpina, and a negative effect on the distribution of O. eremita.Main conclusion We found that climate change would promote the expansion of saproxylic beetles only in the unrealistic case of unlimited dispersal. Accounting for dispersal abilities, the expansion of our species would be mainly conditioned by the effect of land use change. Thus, we encourage researchers to combine climate and land use change with dispersal when projecting species distribution under future scenarios to accurately identify areas with fundamental species-specific resources

    Ecosystem service supply by European landscapes under alternative land-use and environmental policies

    No full text
    The European Union (EU) 2020 Biodiversity strategy aims at guaranteeing and enhancing the future supply of ecosystem services (‘ES’) in the member states. In an ex-ante assessment of plausible environmental policies, we projected the supply of 10 ES under 3 policy alternatives of land-use change (‘Nature Protection’, ‘Payment for carbon sequestration’ and ‘Payment for recreational services’) in the 27 EU member states (EU27). We assessed changes in supply of individual services across administrative units (at the NUTS-2 and EU27 levels) as well as bundles (at the EU27 level) between 2010 and 2040. Results show that the policy options only marginally affected ES bundles but several services could change substantially at the EU27 level (e.g. energy content from agricultural production and pollination). Wood supply, carbon sequestration and moderation of wind disturbance responded very differently across policy alternatives. At the NUTS-2 level, biocontrol of pests, carbon sequestration, moderation of wind disturbance and wood supply showed the most contrasted deviation from their regional supply in 2010. Finally, while payments for carbon sequestration benefited carbon sequestration as expected, specific payments for recreation services failed to promote them. Our analyses suggest that protecting nature appeared to be the best way of fostering ES supply within Europe.JRC.D.5-Food Securit

    Ecosystem service supply by European landscapes under alternative land-use and environmental policies

    Get PDF
    The European Union (EU) 2020 Biodiversity strategy aims at guaranteeing and enhancing the future supply of ecosystem services (‘ES’) in the member states. In an ex-ante assessment of plausible environmental policies, we projected the supply of 10 ES under 3 policy alternatives of land-use change (‘Nature Protection’, ‘Payment for carbon sequestration’ and ‘Payment for recreational services’) in the 27 EU member states (EU27). We assessed changes in supply of individual services across administrative units (at the NUTS-2 and EU27 levels) as well as bundles (at the EU27 level) between 2010 and 2040. Results show that the policy options only marginally affected ES bundles but several services could change substantially at the EU27 level (e.g. energy content from agricultural production and pollination). Wood supply, carbon sequestration and moderation of wind disturbance responded very differently across policy alternatives. At the NUTS-2 level, biocontrol of pests, carbon sequestration, moderation of wind disturbance and wood supply showed the most contrasted deviation from their regional supply in 2010. Finally, while payments for carbon sequestration benefited carbon sequestration as expected, specific payments for recreation services failed to promote them. Our analyses suggest that protecting nature appeared to be the best way of fostering ES supply within Europe.EDITED BY Rob Alkemad

    Archetypical patterns and trajectories of land systems in Europe

    No full text
    Assessments of land-system change have dominantly focused on conversions among broad land-use categories, whereas intensity changes within these categories have received less attention. Considering that both modes of land change typically result in diverse patterns and trajectories of land-system change, there is a need to develop approaches to reduce this complexity. Using Europe as a case study, we applied a clustering approach based on self-organising maps and 12 land-use indicators to map (1) land-system archetypes for the year 2006, defined as characteristic patterns of land-use extent and intensity, and (2) archetypical change trajectories, defined as characteristic changes in these indicators between 1990 and 2006. Our analysis identified 15 land-system archetypes, with low-intensity archetypes dominating (ca. 55 % coverage) followed by high-intensity archetypes (ca. 26 %). In terms of change, we identified 17 archetypical change trajectories, clustered in four broad categories. Stable land systems were most widespread (ca. 40 % of the EU27), followed by land systems characterised by land-use conversions (ca. 26 %), de-intensification trends (ca. 18 %), and intensification trends (ca. 15 %). Intensively used and intensifying land systems were particularly widespread in Western Europe, whereas low-intensity and de-intensifying land systems dominated in Europe’s east. Comparing our archetypes with environmental and socio-economic factors revealed that good accessibility and favourable topographic, climatic, and soil conditions characterised intensively managed areas. Intensification was also most common in these areas, suggesting an ongoing polarisation of intensification in favourable areas and de-intensification and abandonment trends in more marginal areas. By providing spatially and thematically improved maps of land-use patterns and changes therein, our archetypes could serve as useful inputs for more detailed assessments of ecosystem service demand and supply, as well as explorations of land-system change trade-offs, especially with regard to land-use intensity. Further, they could serve useful for identifying regions within which similar policy tools could be valuable to develop regionalised, context-specific land-management policies to steer European land systems onto desired pathways
    corecore