539 research outputs found

    Identifying Drivers of Genetically Modified Seafood Demand: Evidence from a Choice Experiment

    Get PDF
    The aquaculture industry has expanded to fill the gap between plateauing wild seafood supply and growing consumer seafood demand. The use of genetic modification (GM) technology has been proposed to address sustainability concerns associated with current aquaculture practices, but GM seafood has proved controversial among both industry stakeholders and producers, especially with forthcoming GM disclosure requirements for food products in the United States. We conduct a choice experiment eliciting willingness-to-pay for salmon fillets with varying characteristics, including GM technology and GM feed. We then develop a predictive model of consumer choice using LASSO (least absolute shrinkage and selection operator)-regularization applied to a mixed logit, incorporating risk perception, ambiguity preference, and other behavioral measures as potential predictors. Our findings show that health and environmental risk perceptions, confidence and concern about potential health and environmental risks, subjective knowledge, and ambiguity aversion in the domain of GM foods are all significant predictors of salmon fillet choice. These results have important implications for marketing of foods utilizing novel food technologies. In particular, people familiar with GM technology are more likely to be open to consuming GM seafood or GM-fed seafood, and effective information interventions for consumers will include details about health and environmental risks associated with GM seafood

    Targeting of Rac GTPases blocks the spread of intact human breast cancer

    Get PDF
    High expression of Rac small GTPases in invasive breast ductal carcinoma is associated with poor prognosis, but its therapeutic value in human cancers is not clear. The aim of the current study was to determine the response of human primary breast cancers to Rac-based drug treatments ex vivo. Three-dimensional organotypic cultures were used to assess candidate therapeutic avenues in invasive breast cancers. Uniquely, in these primary cultures, the tumour is not disaggregated, with both epithelial and mesenchymal components maintained within a three-dimensional matrix of type I collagen. EHT 1864, a small molecule inhibitor of Rac GTPases, prevents spread of breast cancers in this setting, and also reduces proliferation at the invading edge. Rac1+ epithelial cells in breast tumours also contain high levels of the phosphorylated form of the transcription factor STAT3. The small molecule Stattic inhibits activation of STAT3 and induces effects similar to those seen with EHT 1864. Pan-Rac inhibition of proliferation precedes down-regulation of STAT3 activity, defining it as the last step in Rac activation during human breast cancer invasion. Our data highlights the potential use of Rac and STAT3 inhibition in treatment of invasive human breast cancer and the benefit of studying novel cancer treatments using three-dimensional primary tumour tissue explant cultures

    Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns

    Get PDF
    ABSTRACT: BACKGROUND: Aberrant CpG island promoter DNA hypermethylation is frequently observed in cancer and is believed to contribute to tumor progression by silencing the expression of tumor suppressor genes. Previously, we observed that promoter hypermethylation in breast cancer reflects cell lineage rather than tumor progression and occurs at genes that are already repressed in a lineage-specific manner. To investigate the generality of our observation we analyzed the methylation profiles of 1,154 cancers from 7 different tissue types. RESULTS: We find that 1,009 genes are prone to hypermethylation in these 7 types of cancer. Nearly half of these genes varied in their susceptibility to hypermethylation between different cancer types. We show that the expression status of hypermethylation prone genes in the originator tissue determines their propensity to become hypermethylated in cancer; specifically, genes that are normally repressed in a tissue are prone to hypermethylation in cancers derived from that tissue. We also show that the promoter regions of hypermethylation-prone genes are depleted of repetitive elements and that DNA sequence around the same promoters is evolutionarily conserved. We propose that these two characteristics reflect tissue-specific gene promoter architecture regulating the expression of these hypermethylation prone genes in normal tissues. CONCLUSIONS: As aberrantly hypermethylated genes are already repressed in pre-cancerous tissue, we suggest that their hypermethylation does not directly contribute to cancer development via silencing. Instead aberrant hypermethylation reflects developmental history and the perturbation of epigenetic mechanisms maintaining these repressed promoters in a hypomethylated state in normal cells.Publisher PDFPeer reviewe

    Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression

    Get PDF
    Chemical inhibitors of histone deacetylase (HDAC) activity are used as experimental tools to induce histone hyperacetylation and deregulate gene transcription, but it is not known whether the inhibition of HDACs plays any part in the normal physiological regulation of transcription. Using both in vitro and in vivo assays, we show that lactate, which accumulates when glycolysis exceeds the cell’s aerobic metabolic capacity, is an endogenous HDAC inhibitor, deregulating transcription in an HDAC-dependent manner. Lactate is a relatively weak inhibitor (IC(50) 40 mM) compared to the established inhibitors trichostatin A and butyrate, but the genes deregulated overlap significantly with those affected by low concentrations of the more potent inhibitors. HDAC inhibition causes significant up and downregulation of genes, but genes that are associated with HDAC proteins are more likely to be upregulated and less likely to be downregulated than would be expected. Our results suggest that the primary effect of HDAC inhibition by endogenous short-chain fatty acids like lactate is to promote gene expression at genes associated with HDAC proteins. Therefore, we propose that lactate may be an important transcriptional regulator, linking the metabolic state of the cell to gene transcription

    Length of the weaning period affects postweaning growth, health, and carcass merit of ranch-direct beef calves weaned during the fall

    Get PDF
    Bovine respiratory disease (BRD) is the most economically devastating feedlot disease. Risk factors associated with incidence of BRD include (1) stress associated with maternal separation, (2) stress associated with introduction to an unfamiliar environment, (3) poor intake associated with introduction of novel feedstuffs into the animal\u27s diet, (4) exposure to novel pathogens upon transport to a feeding facility and commingling with unfamiliar cattle, (5) inappropriately administered respiratory disease vaccination programs, and (6) poor response to respiratory disease vaccination programs. Management practices that are collectively referred to as preconditioning are thought to minimize damage to the beef carcass from the BRD complex. Preconditioning management reduces the aforementioned risk factors for respiratory disease by (1) using a relatively long ranch-of-origin weaning period following maternal separation, (2) exposing calves to concentrate-type feedstuffs, and (3) producing heightened resistance to respiratory disease-causing organisms through a preweaning vaccination program. The effectiveness of such programs for preserving animal performance is highly touted by certain segments of the beef industry. Ranch-of-origin weaning periods of up to 60 days are suggested for preconditioning beef calves prior to sale; however, optimal length of the ranch-of-origin weaning period has not been determined experimentally. The objective of this study was to test the validity of beef industry assumptions about appropriate length of ranch-of-origin weaning periods for calves aged 160 to 220 days and weaned during the fall

    The mating-specific Gα interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast

    Get PDF
    As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Gα protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating. © 2009 by The American Society for Cell Biology

    Observation of the Dynamic Beta Effect at CESR with CLEO

    Get PDF
    Using the silicon strip detector of the CLEO experiment operating at the Cornell Electron-positron Storage Ring (CESR), we have observed that the horizontal size of the luminous region decreases in the presence of the beam-beam interaction from what is expected without the beam-beam interaction. The dependence on the bunch current agrees with the prediction of the dynamic beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.

    Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines

    Get PDF
    The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison to fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or and NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress
    • …
    corecore