547 research outputs found

    The PASTEL catalogue of stellar parameters

    Full text link
    The PASTEL catalogue is an update of the [Fe/H] catalogue, published in 1997 and 2001. It is a bibliographical compilation of stellar atmospheric parameters providing (Teff,logg,[Fe/H]) determinations obtained from the analysis of high resolution, high signal-to-noise spectra, carried out with model atmospheres. PASTEL also provides determinations of the one parameter Teff based on various methods. It is aimed in the future to provide also homogenized atmospheric parameters and elemental abundances, radial and rotational velocities. A web interface has been created to query the catalogue on elaborated criteria. PASTEL is also distributed through the CDS database and VizieR. To make it as complete as possible, the main journals have been surveyed, as well as the CDS database, to find relevant publications. The catalogue is regularly updated with new determinations found in the literature. As of Febuary 2010, PASTEL includes 30151 determinations of either Teff or (Teff,logg,[Fe/H]) for 16649 different stars corresponding to 865 bibliographical references. Nearly 6000 stars have a determination of the three parameters (Teff,logg,[Fe/H]) with a high quality spectroscopic metallicity.Comment: 5 pages, accepted for publication in A&A. The PASTEL catalogue can be queried at http://pastel.obs.u-bordeaux1.fr/ or http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/paste

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte

    The ELODIE archive

    Full text link
    The ELODIE archive contains the complete collection of high-resolution echelle spectra accumulated over the last decade using the ELODIE spectrograph at the Observatoire de Haute-Provence 1.93-m telescope. This article presents the different data products and the facilities available on the web to re-process these data on-the-fly. Users can retrieve the data in FITS format from http://atlas.obs-hp.fr/elodie and apply to them different functions: wavelength resampling and flux calibration in particular.Comment: 8 pages, 3 figures and 1 tabl

    Kinematic parameters and membership probabilities of open clusters in the Bordeaux PM2000 catalogue

    Full text link
    We derive lists of proper-motions and kinematic membership probabilities for 49 open clusters and possible open clusters in the zone of the Bordeaux PM2000 proper motion catalogue (+11δ+18+11^{\circ}\le\delta\le+18^{\circ}). We test different parametrisations of the proper motion and position distribution functions and select the most successful one. In the light of those results, we analyse some objects individually. The segregation between cluster and field member stars, and the assignment of membership probabilities, is accomplished by applying a new and fully automated method based on both parametrisations of the proper motion and position distribution functions, and genetic algorithm optimization heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. We present a catalogue comprising kinematic parameters and associated membership probability lists for 49 open clusters and possible open clusters in the Bordeaux PM2000 catalogue region. We note that this is the first determination of proper motions for five open clusters. We confirm the non-existence of two kinematic populations in the region of 15 previously suspected non-existent objects.Comment: 14 pages, 6 figures, 4 tables. Accepted for publication in Astronomy & Astrophysic

    The catalog of radial velocity standard stars for the Gaia RVS: status and progress of the observations

    Full text link
    A new full-sky catalog of Radial Velocity standard stars is being built for the determination of the Radial Velocity Zero Point of the RVS on board of Gaia. After a careful selection of 1420 candidates matching well defined criteria, we are now observing all of them to verify that they are stable enough over several years to be qualified as reference stars. We present the status of this long-term observing programme on three spectrographs : SOPHIE, NARVAL and CORALIE, complemented by the ELODIE and HARPS archives. Because each instrument has its own zero-point, we observe intensively IAU RV standards and asteroids to homogenize the radial velocity measurements. We can already estimate that ~8% of the candidates have to be rejected because of variations larger than the requested level of 300 m/s.Comment: Proceedings of SF2A2010, S. Boissier, M. Heydari-Malayeri, R. Samadi and D. Valls-Gabaud (eds), 3 pages, 2 figure

    On the kinematics of the neutron star low mass X-ray binary Cen X-4

    Full text link
    We present the first determination of the proper motion of the neutron star low mass X-ray binary {Cen X-4} measured from relative astrometry of the secondary star using optical images at different epochs. We determine the Galactic space velocity components of the system and find them to be significantly different from the mean values that characterize the kinematics of stars belonging to the halo, and the thin and the thick disc of the Galaxy. The high metallicity of the secondary star of the system rules out a halo origin and indicates that the system probably originated in the Galactic disc. A statistical analysis of the galactocentric motion revealed that this binary moves in a highly eccentric (e0.85±0.1e\simeq 0.85\pm0.1) orbit with an inclination of 110\simeq 110^\circ to the Galactic plane. The large Galactic space velocity components strongly support that a high natal kick as a result of a supernova explosion could have propelled the system into such an orbit from a birth place in the Galactic disc. The high Li abundance in the secondary, comparable to that of stars in star forming regions and young stellar clusters like the Pleiades, may suggest a relatively recent formation of the system. Following the orbit backwards in time, we found that the system could have been in the inner regions of the Galactic disc \sim100--200 Myr ago. The neutron star might have formed at that moment. However, we cannot rule out the possibility that the system formed at a much earlier time if a Li production mechanism exists in this LMXB.Comment: 6 pages, 4 figures, accepted for publication in A&

    Spectroscopic ages and metallicities of stellar populations: validation of full spectrum fitting

    Full text link
    Fitting whole spectra at intermediate spectral resolution (R = 1000 -- 3000), to derive physical properties of stellar populations, appears as an optimized alternative to methods based on spectrophotometric indices: it uses all the redundant information contained in the signal. This paper addresses the validation of the method and it investigates the quality of the population models together with the reliability of the fitting procedures. We are using two algorithms: STECKMAP, a non-parametric regularized program and NBURSTS a parametric non-linear minimization. We compare three spectral synthesis models for single stellar populations: Pegase-HR, Galaxev (BC03) and Vazdekis/Miles, and we analyse spectra of Galactic clusters whose populations are known from studies of color-magnitude diagrams (CMD) and spectroscopy of individual stars. We find that: (1) The quality of the models critically depends on the stellar library they use. Pegase-HR and Vazdekis/Miles are consistent, while the comparison between Pegase-HR and BC03 shows some systematics reflecting the limitations of the stellar library (STELIB) used to generate the latter models; (2) The two fitting programs are consistent; (3) For globular clusters and M67 spectra, the method restitutes metallicities in agreement with spectroscopy of stars within 0.14 dex; (4) The spectroscopic ages are very sensitive to the presence of a blue horizontal branch (BHB) or of blue stragglers. A BHB morphology results in a young SSP-equivalent age. Fitting a free amount of blue stars in addition to the SSP model to mimic the BHB improves and stabilizes the fit and restores ages in agreement with CMDs studies. This method is potentially able to disentangle age or BHB effects in extragalactic clusters.Comment: accepted in MNRAS; Full version available at http://www-obs.univ-lyon1.fr/labo/perso/prugniel/mina/koleva.pd

    M2000 : an astrometric catalog in the Bordeaux Carte du Ciel zone +11 degrees < {delta} < +18 degrees

    Full text link
    During four years, systematic observations have been conducted in drift scan mode with the Bordeaux automated meridian circle in the declination band [+11 ; +18]. The resulting astrometric catalog includes about 2 300 000 stars down to the magnitude limit V_M=16.3. Nearly all stars (96%) have been observed at least 6 times, the catalog being complete down to V_M=15.4. The median internal standard error in position is about 35 mas in the V_M magnitude range [11 ; 15], which degrades to about 50 mas when the faintest stars are considered. M2000 provides also one band photometry with a median internal standard error of 0.04 mag. Comparisons with the Hipparcos and bright part of Tycho-2 catalogs have enabled to estimate external errors in position to be lower than 40 mas. In this zone and at epoch 1998, the faint part of Tycho-2 is found to have an accuracy of 116 mas in alpha instead of 82 mas deduced from the model-based standard errors given in the catalog.Comment: The catalogue can be fetched directly from: ftp://cdsarc.u-strasbg.fr/cats/I/272 or queried from: http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=I/272 More information at : http://www.observ.u-bordeaux.fr/~soubiran/m2000.ht

    Testing the chemical tagging technique with open clusters

    Get PDF
    Context. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to analyze the chemical abundances that we observe today. Aims. The chemical tagging technique aims to recover disrupted stellar clusters based merely on their chemical composition. We evaluate the viability of this technique to recover co-natal stars that are no longer gravitationally bound. Methods. Open clusters are co-natal aggregates that have managed to survive together. We compiled stellar spectra from 31 old and intermediate-age open clusters, homogeneously derived atmospheric parameters, and 17 abundance species, and applied machine learning algorithms to group the stars based on their chemical composition. This approach allows us to evaluate the viability and efficiency of the chemical tagging technique. Results. We found that stars at different evolutionary stages have distinct chemical patterns that may be due to NLTE effects, atomic diffusion, mixing, and biases. When separating stars into dwarfs and giants, we observed that a few open clusters show distinct chemical signatures while the majority show a high degree of overlap. This limits the recovery of co-natal aggregates by applying the chemical tagging technique. Nevertheless, there is room for improvement if more elements are included and models are improved.Comment: accepted for publication in Astronomy and Astrophysics. Corrected typo
    corecore