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ABSTRACT

Context. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and
well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the
Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to
analyze the chemical abundances that we observe today.
Aims. The chemical tagging technique aims to recover disrupted stellar clusters based merely on their chemical composition. We
evaluate the viability of this technique to recover co-natal stars that are no longer gravitationally bound.
Methods. Open clusters are co-natal aggregates that have managed to survive together. We compiled stellar spectra from 31 old and
intermediate-age open clusters, homogeneously derived atmospheric parameters, and 17 abundance species, and applied machine
learning algorithms to group the stars based on their chemical composition. This approach allows us to evaluate the viability and
efficiency of the chemical tagging technique.
Results. We found that stars at different evolutionary stages have distinct chemical patterns that may be due to NLTE effects, atomic
diffusion, mixing, and biases. When separating stars into dwarfs and giants, we observed that a few open clusters show distinct
chemical signatures while the majority show a high degree of overlap. This limits the recovery of co-natal aggregates by applying the
chemical tagging technique. Nevertheless, there is room for improvement if more elements are included and models are improved.

Key words. stars: abundances – techniques: spectroscopic – Galaxy: abundances

1. Introduction

Understanding the formation and evolution of galaxies and their
structure (e.g., disks) is an open issue in near-field cosmology.
One approach to tackle this problem is to study our own Galaxy
by unravelling the sequence of events that took place in the for-
mation of the Galactic disk (where most star formation occurs).
Unfortunately, most of the dynamical information is lost since
the disk was formed in a dissipative process and it evolved dy-
namically. Nevertheless, the chemical composition of the stars
can potentially help us to recover the history of our Galaxy
(Freeman & Bland-Hawthorn 2002).

? Based on observations obtained at the Telescope Bernard Lyot
(USR5026) operated by the Observatoire Midi-Pyrénées, Université de
Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique
of France, and on public data obtained from the ESO Science Archive
Facility under requests number 81252 and 81618.

Stars are born in aggregates from molecular clouds (Shu
et al. 1987; Meyer et al. 2000; Lada & Lada 2003). Hydrody-
namical simulations indicate that the progenitor cloud undergoes
fragmentation preventing contraction onto a single star (Jappsen
et al. 2005; Tilley & Pudritz 2004; Larson 1995). Hundreds to
thousands of stars can be formed from one single cloud. If we
assume that the progenitor cloud was chemically well-mixed
(Feng & Krumholz 2014), then we expect to observe homoge-
neous chemical composition in the stars formed from this cloud
(Bland-Hawthorn et al. 2010). With this information, we could
use the method of chemical tagging to track individual stars
back to their common formation sites as proposed by Freeman
& Bland-Hawthorn (2002).

The viability of this approach depends on two critical issues:
do stars born together have the same chemical signature? And,
are the chemical signatures different enough to distinguish stars
formed from different molecular clouds?
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In this context, open clusters are a fantastic laboratory to
investigate their homogeneity and validate that their progenitor
clouds were uniformly mixed. Most of the stars formed in clus-
ters in our Galaxy have already been dispersed into the field,
but a few of them managed to stay gravitationally bound, prob-
ably, thanks to a higher formation rate and/or galactic orbits that
avoided high-density regions and giant molecular clouds (Friel
1995; Finlay et al. 1995; van den Bergh & McClure 1980). Thus,
old and intermediate-age clusters (age >∼100 Myr) are the left-
overs of star forming aggregates in the Galactic disk that have
managed to survive until the present day. We can be certain that
their stars were born from the same molecular cloud at roughly
the same period.

Additionally, since each molecular cloud has its own his-
tory of pollution by ejecta from core-collapse supernovae (i.e.,
Type II, Ib, and Ic Supernovae where most of the α-elements are
produced), Type Ia supernovae (SNe Ia where most iron peak
elements are created), and asymptotic giant branch stars (AGB
where a s-process takes place), we expect different open clusters
to have different chemical patterns.

There is some observational evidence for chemical homo-
geneity in open clusters. For instance, De Silva et al. (2006)
present an abundance analysis of the heavy elements Zr, Ba,
La, Ce, and Nd (their abundances are not thought to be mod-
ified during normal stellar evolution) for F-K dwarfs in the
Hyades open cluster. They claimed that the abundances of mem-
ber stars are highly uniform and they showed a scatter on the
order of 0.06 dex for Zr; 0.05 dex for Ba; 0.03 dex for Ce, La,
and Nd.

In a subsequent study, De Silva et al. (2007) measured the
lighter elements Na, Mg, Si, Ca, Mn, Fe, and Ni (but not for
Zr and Ba) for 12 red giants of the old open cluster Collinder
261. They demonstrated again a high chemical homogeneity for
this cluster finding a dispersion of 0.07 dex for Na, 0.05 dex for
Mg and Ca, 0.06 dex for Si, 0.03 dex for Mn, 0.02 dex for Fe,
and 0.04 dex for Ni. Additionally, they compared Collinder 261,
the Hyades, and the HR 1614 moving group and were able to
show that the three have unique chemical signatures.

This last study was extended in De Silva et al. (2009), where
the authors compiled abundances of 24 open clusters from the
literature and showed that different clusters seem to have differ-
ent chemical patterns (from the average values). They observe
significant dispersion for some elements; however, one possi-
ble reason is systematic uncertainties among the different studies
(e.g., use of different methods, atomic data, model atmospheres).

Mitschang et al. (2013) quantified the level to which chem-
ical tagging can distinguish between co-natal stars (stars born
at the same period and formation site) by developing a metric
and deriving an empirical probability function based on chemi-
cal abundances for 35 clusters collected from the literature. The
authors showed that achieving a high clustering detection effi-
ciency is difficult and that depends on the level of uniqueness of
the co-natal stars’ chemical signatures.

Although abundances are now available in the literature for
many stars in open clusters, it is not appropiate to mix them into
a single dataset to study the chemical patterns in the open cluster
population (as it was done in most of the previous studies). The
abundances have been obtained by diverse observers using dif-
ferent instruments and methods, resulting in possible systematic
differences. The use of different methods (e.g., equivalent width
or synthetic spectral fitting), atomic data, model atmospheres,
and continuum normalization processes can lead to systematic
errors. Other studies derive very accurate chemical abundances
but in a non-automatic way (e.g., manual continuum and/or line

fitting). Manual analysis is affected by subjective criteria that
can vary with time and is not easily used when a huge quantity
of spectra must be analyzed. For instance, the on-going Gaia-
ESO Public Spectroscopic Survey (GES; Gilmore et al. 2012)
will target approximately 100 000 field and open cluster stars in
the Galaxy, and the GALactic Archaeology (GALAH; De Silva
et al. 2015) with HERMES (Barden et al. 2010) survey will tar-
get a million disk stars at high resolution in a relatively short
time-span.

It is worth noting that we do not intend to build an exhaustive
compilation of past and on-going studies in this introduction. We
note, however, some other examples of significant contributions
to the determination of chemical abundances for large samples
of open clusters: the Bologna Open Clusters Chemical Evolution
project (BOCCE, Bragaglia & Tosi 2006); the WIYN Open
Cluster Study (Mathieu 2000; Jacobson et al. 2011); and recent
papers from GES such as Magrini et al. (2014), where the chem-
ical homogeneity of the inner-disk open clusters Trumpler 20,
NGC 4815, and NGC 6705 from the first GES data was shown.

To evaluate the potential of chemical tagging when using our
own homogeneous and automatic analysis, we have

1. collected high-resolution spectra of open clusters’ stars ob-
served by different instruments and homogenized them;

2. implemented a completely automatic process to derive atmo-
spheric parameters and chemical abundances;

3. applied machine learning algorithms to try to recover the
original clusters from the homogeneously derived chemical
abundances.

We describe the collected data in Sect. 2. The spectral analysis
developed to derive the atmospheric parameters and chemical
abundances is presented in Sect. 3. In Sect. 4 we explore the
results of our analysis to validate the viability of the chemical
tagging technique and, finally, the conclusions can be found in
Sect. 5.

2. Sample selection and observations

We compiled 2133 high-resolution spectra of which 146 come
from the NARVAL instrument, 1630 from HARPS, and 357
from UVES. The initial selection criteria were that the spectral
resolution had to be at least 47 000 (to match the setup of the
GES) and the star had to be located in the field of view of a
cluster (i.e., inside a given radius around the cluster center). We
mainly looked for clusters discussed in Paunzen et al. (2010) and
Heiter et al. (2014), although we did not strictly limit the selec-
tion to these. Based on this dataset, a further selection process
was performed according to cluster membership and spectrum
quality as described in Sect. 2.4.

2.1. NARVAL spectra

The NARVAL spectropolarimeter is mounted on the 2 m
Telescope Bernard Lyot (Aurière 2003) located at Pic du Midi
(France). The data from NARVAL were reduced with the Libre-
ESpRIT pipeline (Donati et al. 1997). These spectra were taken
within a large program proposed as part of the “Ground-based
observations for Gaia” (P.I.: C. Soubiran).

NARVAL spectra cover a large wavelength range
(∼300−1100 nm), with a resolution1 that varies for differ-
ent observation dates and along the wavelength range, typically

1 In this text, the term “resolution” refers to R =
λ

∆λ
where λ is the

wavelength.

A47, page 2 of 15



S. Blanco-Cuaresma et al.: Testing the chemical tagging technique with open clusters

from 75 000 around 400 nm to 85 000 around 800 nm. However,
it is acceptable to initially assume a constant resolution of
R ' 81 000 as we showed in Blanco-Cuaresma et al. (2014b).

2.2. HARPS spectra

HARPS is the ESO facility for the measurement of radial veloc-
ities with very high accuracy. It is fiber-fed from the Cassegrain
focus of the 3.6 m telescope in La Silla (Mayor et al. 2003). The
spectra were originally reduced by the HARPS Data Reduction
Software (version 3.1). The data used in this work were taken
from the public HARPS archive by selecting observed stars in
the clusters’ field of view.

The spectral range covered is 378–691 nm, but as the de-
tector consists of a mosaic of two CCDs, one spectral order
(from 530 nm to 533 nm) is lost in the gap between the two
chips.

2.3. UVES spectra

The UVES spectrograph is hosted by unit telescope 2 of ESO’s
VLT (Dekker et al. 2000). We took the spectra available from the
Advanced Data Products collection of the ESO Science Archive
Facility2 (made available in October 2013) by selecting observed
stars in clusters’ field of view.

The setup used for each observation (CD#3, centered around
580 nm) provides a spectrum with two different parts which ap-
proximately cover the ranges from 476 to 580 nm (lower part)
and from 582 to 683 nm (upper part).

2.4. Data homogenization

The wavelength range varies from one set of observations to an-
other. We chose to limit the spectral analysis to the range be-
tween 480 and 680 nm, where all the spectra provide their best
signal-to-noise ratio (S/N).

To increase the overall S/N, we co-added spectra correspond-
ing to the same star when they were observed by the same in-
strument and with the same setup (i.e., same resolution). After
co-addition, we discarded spectra with S/N lower than 40, which
is an optimal level for determining atmospheric parameters with
iSpec (Blanco-Cuaresma et al. 2014a).

All the spectra were convolved to 47 000, which is the mini-
mum resolution from our initial selection of spectra.

Observations were cross-correlated with a zero point tem-
plate corresponding to a solar spectrum observed by NARVAL
(Blanco-Cuaresma et al. 2014b). The derived radial velocities
were used to shift and align all the spectra.

We assume that cluster members share the same velocity
vector with a small random dispersion, thus we discarded stars
with a radial velocity higher or lower than the cluster’s reference
velocity ±2 km s−1 (see Table 1), which is a reasonable limit
considering the observed dispersion by previous studies such as
Mermilliod et al. (2009). We did not detect any double lined
spectroscopic binary stars in our dataset.

After co-addition and the second selection criteria (i.e., S/N
higher than 40 and membership validation by radial veloc-
ity), the dataset is reduced to 447 spectra that correspond to
392 different stars.

2 http://archive.eso.org/eso/eso_archive_adp.html

3. Spectral analysis

An automatic computational process was developed to derive at-
mospheric parameters and chemical abundances. The process is
based on the integrated spectroscopic framework named iSpec
(Blanco-Cuaresma et al. 2014a).

For the atmospheric parameters derivation we used the
atomic data kindly provided by the GES line-list sub-working
group prior to publication (Heiter et al., in prep.). The line-list
covers our wavelength range of interest and it also provides a
selection of middle-3 and high-quality lines (based on the relia-
bility of the oscillator strength and the blend level) for iron and
other elements (e.g., Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co,
Ni, Cu, Zn, Sr, Y, Zr, Ba, Nd, and Sm).

We adopted the MARCS4 model atmosphere (Gustafsson
et al. 2008) with the solar abundances from Grevesse et al.
(2007). It is worth noting that the model atmosphere grid is
formed of a combination of plane-parallel and spherical mod-
els. The first is reasonable for modeling the atmosphere of dwarf
stars (where the extent of the atmosphere is smaller than the
stellar radius), while the second is more appropriate for giant
stars. However, the synthesizer used by iSpec (SPECTRUM;
Gray & Corbally 1994) will interpret the spherical models as
plane-parallel. The differences that may be introduced for F, G,
and K giants are below 0.03 dex in terms of iron abundances as
shown by Heiter & Eriksson (2006).

3.1. Atmospheric parameters

The determination of atmospheric parameters forms part of an
iterative process, based on iSpec, where the continuum normal-
ization also takes place. It consists of the following steps.

1. Blind normalization. At this stage we do not know the kind
of star we are analyzing, thus we fit the continuum by us-
ing the default iSpec algorithm where the following general
subprocesses are executed:
(a) reduction of the noise effects by applying a median filter

with a window of 0.10 nm;
(b) application of a maximum filter with a window of 1.0 nm

to select those fluxes that have a larger probability to be-
long to the continuum;

(c) fitting of second degree splines every 1.0 nm to the fil-
tered points and dividing the original observed spectrum
by the fitted model.

2. Line fitting. For each spectrum, we fit the selected absorption
lines with Gaussian profiles and we automatically discard
lines that fall into one of these cases:
(a) fitted Gaussian peak too far away from the expected po-

sition (more than 0.0005 nm). Convection could produce
shifts, but it is also possible that a strong nearby absorp-
tion line is dominating the region and blending consid-
erably the original targeted line. The analysis would re-
quire manual inspection, thus we reject those lines.

(b) Bad fits with a root mean square bigger than 1.0 (e.g.,
extreme values due to a cosmic ray).

(c) Absorption lines potentially affected by telluric lines
(previously identified by cross-correlating with a telluric
line mask).

(d) Invalid fluxes (i.e., negative or inexistent due to gaps in
the observation).

3 Lines that might be slightly more blended for hotter or colder stars.
4 http://marcs.astro.uu.se/
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Table 1. Analyzed clusters with the number of co-added spectra per instrument and other known cluster properties from the literature.

HARPS NARVAL UVES l b Distance RV [M/H] Age
Cluster (deg) (deg) (pc) (km s−1) Src (dex) Src (Gyr) Src
Collinder350 – 2 – 26.75 14.66 280 –15.20 (7) – – 0.4 (1)
IC 2714 8 – 4 292.40 –1.80 1240 –13.60 (11) 0.02 (9) 0.3 (3)
IC 4651 7 – 29 340.09 –7.91 890 –30.36 (11) 0.12 (9) 1.1 (1)
IC 4756 – – 4 36.38 5.24 480 –25.16 (4) 0.02 (9) 0.7 (3)
M 67 49 – 46 215.70 31.90 790 33.77 (11) 0.00 (9) 4.1 (3)
Melotte111 – 11 – 221.35 84.02 100 0.01 (4) 0.00 (9) 0.7 (8)
Melotte20 – 8 – 146.57 –5.86 190 –2.04 (4) 0.14 (9) 0.1 (8)
Melotte22 – 7 – 166.57 –23.52 130 5.41 (2) –0.01 (9) 0.1 (8)
Melotte71 – 3 – 228.95 4.50 1970 50.71 (4) –0.27 (9) 0.2 (1)
NGC 1817 – 4 – 186.16 –13.10 1380 65.31 (4) –0.11 (9) 0.4 (1)
NGC 2099 – 11 – 177.64 3.09 1330 8.30 (4) 0.02 (9) 0.4 (8)
NGC 2251 – 2 – 203.58 0.11 1890 25.33 (4) –0.09 (9) 0.3 (1)
NGC 2360 8 – 4 229.81 –1.43 770 27.69 (11) –0.03 (9) 0.6 (1)
NGC 2423 1 – 5 230.48 3.54 1040 18.47 (4) 0.08 (9) 1.0 (8)
NGC 2447 – – 10 240.04 0.13 1570 22.08 (4) –0.03 (9) 0.6 (8)
NGC 2477 43 – – 253.56 –5.84 1360 7.61 (11) 0.07 (9) 0.9 (3)
NGC 2539 7 – 5 233.71 11.11 360 29.23 (11) –0.02 (9) 0.5 (3)
NGC 2547 – – 1 264.46 –8.60 770 14.00 (7) –0.16 (1) 0.0 (5)
NGC 2548 – 2 – 227.87 15.39 1680 7.70 (4) 0.08 (1) 0.4 (3)
NGC 2567 4 – 2 249.80 2.96 190 36.71 (11) –0.04 (9) 0.3 (8)
NGC 2632 2 17 1 205.92 32.48 910 34.07 (4) 0.20 (9) 0.6 (8)
NGC 3114 – – 2 283.33 –3.84 490 –1.72 (4) 0.05 (9) 0.2 (8)
NGC 3532 4 – 3 289.57 1.35 940 4.23 (11) 0.00 (9) 0.4 (8)
NGC 3680 – – 8 286.76 16.92 2180 1.28 (4) –0.01 (9) 1.2 (1)
NGC 4349 5 – 4 299.72 0.83 930 –11.33 (11) –0.07 (9) 0.2 (1)
NGC 5822 2 – 3 321.57 3.59 300 –29.31 (4) 0.08 (9) 0.9 (1)
NGC 6253 3 – – 335.46 –6.25 630 –29.11 (6) 0.34 (9) 5.0 (1)
NGC 6475 – – 1 355.86 –4.50 380 –15.57 (4) 0.02 (9) 0.3 (8)
NGC 6494 4 – 1 9.89 2.83 1880 –8.08 (11) –0.04 (9) 0.3 (1)
NGC 6633 1 – 3 36.01 8.33 1220 –28.95 (4) –0.08 (9) 0.4 (1)
NGC 6705 19 – 2 27.31 –2.78 770 34.70 (11) 0.12 (9) 0.3 (8)
NGC 6811 – 2 – 79.21 12.01 460 7.28 (4) 0.04 (10) 0.6 (3)
NGC 6940 – 5 – 69.86 –7.15 3300 7.89 (4) 0.01 (1) 0.7 (1)
NGC 7092 – 3 – 92.40 –2.24 11 400 –2.80 (2) 0.01 (1) 0.4 (8)
NGC 752 – 7 – 137.13 –23.25 3000 5.04 (4) –0.02 (9) 1.1 (5)

Notes. Galactic coordinates and distances from Dias et al. (2002). Radial velocities, spectroscopic metallicities and indicative ages from (1) Dias
et al. (2002); (2) Kharchenko et al. (2005); (3) Paunzen & Netopil (2006); (4) Carraro et al. (2007); (5) Pöhnl & Paunzen (2010); (6) Montalto
et al. (2011); (7) Anderson & Francis (2012); (8) Netopil & Paunzen (2013); (9) Heiter et al. (2014); (10) Molenda-Żakowicz et al. (2014); and
(11) HARPS.

This verification process allows us to adapt the analysis to
the peculiarities of each observation, ensuring that only the
best quality regions are used.

3. Fast atmospheric parameter estimation. We use the synthetic
spectral fitting technique implemented in iSpec, where a
least-square algorithm compares the observed spectra with
synthetic spectra. The compared regions correspond to the
selected absorption lines from step 2 together with the wings
of H-α, H-β and the Mg triplet (around 515−520 nm). The
process estimates the following atmospheric parameters: ef-
fective temperature, surface gravity, metallicity, microturbu-
lence, and macroturbulence. The rotational velocity is fixed
to 2.0 km s−1 since it generally degenerates with the macro-
turbulence. To speed up this first estimation, we limit the
minimization algorithm to one iteration and we use a small
pre-computed synthetic grid with key spectra (i.e., metal-
rich/poor dwarf/giant). This process allows us to quickly dis-
tinguish dwarfs from giants and overall metallicities.

4. Guided normalization. The same steps described in the
blind normalization stage are executed, but after ignoring
all the fluxes that have a value below 0.98 in their respec-
tive synthetic spectra (computed with the fast estimation of

atmospheric parameters from step 3). This way, we reduce
the effect of strong lines in the normalization process.

5. Line re-fitting. Step 2 is repeated with the new normalized
spectra obtained from step 3.

6. Final atmospheric parameter determination: the same anal-
ysis described in step 3 is repeated, but now the maximum
number of iterations is increased to six, which is an optimal
value as shown in Blanco-Cuaresma et al. (2014a).

To reduce the dataset to mainly FGK stars in the main se-
quence and red giant branch, we discarded spectra for which
we found an effective temperature higher than 6500 K or lower
than 4500 K, and a surface gravity higher than 4.60 dex or lower
than 2.00 dex (same limits as in Heiter et al. 2014).

After this third selection criterion, 389 spectra remain, which
correspond to 339 stars. The selection covers the 35 clusters
listed in Table 1, where we included their coordinates, radial ve-
locity, spectroscopic metallicity, and age from the literature.

3.2. Chemical abundances
The metallicity obtained in the atmospheric parameter determi-
nation process (Sect. 3.1) corresponds to a global scaling factor
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that is applied to all the elements (taking the solar abundance as
the reference point). In a subsequent step, individual abundances
are derived.

It has been shown that line-by-line differential analysis with
a manual selection of lines can reach precision of 0.003 dex for
solar twins (Meléndez et al. 2012). In our case, the whole analy-
sis is automatized and stars cover a wider parameter space, thus
we cannot expect such a level of precision. Nevertheless, we de-
veloped a differential analysis where we have derived the solar
absolute abundances of all the absorption lines that were selected
for 7 solar spectra included in the Gaia FGK Benchmark Stars li-
brary (Blanco-Cuaresma et al. 2014b). The process follows these
steps for each element and spectrum:

1. derivation of the absolute abundances for each of the selected
lines by using the synthetic spectral technique implemented
in iSpec.

2. Calculation of the relative abundances by subtracting the so-
lar absolute abundances from the absolute abundances for
each line.

3. Derivation of the final abundance for the spectrum by calcu-
lating the weighted average

x̄w =

∑n
i=1 wixi∑n

i=1 wi
, (1)

where the weight is the inverse of the abundance error w =
1

eA(X)2 reported by iSpec, which is influenced by the spectral
S/N and the goodness of fit.

4. Derivation of the error associated with the final abundance
from the unbiased weighted sample dispersion

σw =
V1

V2
1 − V2

√∑n
i=1 wi (xi − x̄w)2∑n

i=1 wi
, (2)

where V1 =
∑n

i=1 wi and V2 =
∑n

i=1 w
2
i .

We analyzed 779 422 lines from which we discarded extreme
values which are clearly outliers (i.e., relative abundances bigger
than 1.0 dex and smaller than −5.0 dex) and elements with only
one measured line (we required at least two lines to be able to
calculate the weighted sample dispersion). As an order of magni-
tude, the typical dispersion of the abundance of a single element
is ∼0.10 dex.

The abundances that were successfully measured in all the
spectra cover 17 species corresponding to 14 different elements.
The list includes iron peak elements (V I, Cr I/II, Mn I, Fe I/II,
Co I, Ni I), alpha elements (Mg I, Si I, Ca I, Ti I/II), odd-Z el-
ements (Na I, Sc II), and s-process elements (Ba II, Y II). We
discarded stars for which we do not have any of the previous
abundances, thus the final dataset was reduced to 206 stars cov-
ering 32 clusters.

3.3. Chemical outliers

Assuming that stars born together share the same chemical sig-
nature, we used the 17 abundances to identify outliers in each
cluster. However, the low number of stars per cluster is a limiting
factor for the detection of outliers. To overcome this limitation,
we first compressed the 17 dimensions (abundance values) by
using the statistical procedure named principal component anal-
ysis (PCA), where the abundances are converted into a set of
linearly uncorrelated variables (named components) by apply-
ing an orthogonal transformation. The first principal component

has the largest possible variance, and each subsequent compo-
nent has the highest variance possible under the constraint that
it is orthogonal to (i.e., uncorrelated with) the preceding compo-
nents. Ting et al. (2012) illustrated the power of PCA to study
and interpret stellar element abundances.

Second, using the first two components, we estimated and
subtracted the central location in the PCA space for each in-
dependent cluster. Thus, all the clusters share the same central
location (i.e., origin of coordinates in the PCA space) and out-
lying stars are placed farther away. It is important to minimize
the impact of deviant values in the determination of clusters’
central locations in the PCA space. Therefore, we used a ro-
bust estimator named minimum covariance determinant (MCD)
and the Mahalanobis distance (Mahalanobis 1936), which can
tolerate the effect of nearly 50% of contamination in the data
(Rousseeuw 1984) and for which there is a computationally fast
and well-known algorithm (Rousseeuw & Driessen 1999).

Finally, we redetermined the central location and scatter of
all the stars applying again the same algorithm and assuming that
all the cluster have similar dispersion. For multivariate normally
distributed data, the Mahalanobis distances to the central loca-
tion are approximately chi-square distributed with p degrees of
freedom (χ2

p where p = 2 in our case since we use the first two
principal components; Filzmoser 2004). We tagged as outliers
those stars with a squared distance higher than the 80% quantile
of the chi-squared distribution (see Fig. 1).

After executing this procedure and discarding the identified
outliers (see Fig. 2), the dataset was reduced to 177 stars cor-
responding to 31 clusters. The discarded stars could be chemi-
cally peculiar or simply not belong to the cluster. In the case of
NGC 3114, the two stars of the cluster were classified as out-
liers by this method, probably only one of them is a real outlier,
but because of the lack of statistics (if there is an outlier in a
cluster of only two stars, the mean abundances are strongly af-
fected) we prefer to be conservative and discard the complete
cluster. We decided not to perform any further detailed analysis
of these stars since this would fall outside of the scope of this
work. Detailed abundances per cluster and stellar type can be
found in Tables 8 and 9.

4. Chemical tagging

4.1. Continuum normalization effects

As pointed out in the introduction, some of the chemical studies
found in the literature are based on non-homogeneous compi-
lations of abundances, obtained from different sources and by
different methods (e.g., equivalent width/synthetic spectra) and
ingredients (e.g., atomic data, model atmospheres). This inho-
mogeneity implies systematic uncertainties that can mislead our
scientific conclusions.

To illustrate the impact of those changes on the metallicity,
we repeated our full analysis changing only one parameter in the
continuum normalization process (see Sect. 3.1). We decreased
the median filter window from 0.10 to 0.01 nm, which raises the
continuum placement.

We used the iron abundance [Fe/H] as a pertinent tracer of
the metallicity, and we compared the values obtained from both
slightly different normalization procedures. A small change in
the normalization criteria produces a systematic average differ-
ence of −0.07 ± 0.04 dex.

When we compared both results (median filter win-
dow of 0.10 and 0.01 nm) with open cluster metallicities
found in the literature, we obtained the average differences
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Fig. 1. Dwarf (left) and giant stars (right) from all clusters represented using the first two components of the PCA with the central cluster location
subtracted. Stars chemically identified as outliers are shown in red.

Fig. 2. Abundances (top) and mean number of lines used (bottom) in function of species (element code at top, atomic number, and ionization state
in Kurucz format at bottom where “0” is neutral and “1” is ionized) for Melotte 111 dwarfs showing all the analyzed stars (left) and after filtering
outliers (right). All the abundance ratios are referenced to iron except iron itself, which is relative to hydrogen. Each color represents a star with
an identification name shown in the legend.

of −0.07 ± 0.07 dex and 0.01 ± 0.08 dex, respectively (details in
Table 2). The large dispersion confirms the inadequacy of mixing
chemical abundances from different literature sources to draw
solid scientific conclusions.

For the rest of the abundances, we chose to work in terms of
[X/Fe]5 since this way we can partially cancel out the effect of
different continuum placements.

4.2. Abundance and astrophysical parameter correlations

Previous works have already detected trends in chemical abun-
dances with effective temperature and surface gravity for metal
poor globular clusters, measuring iron abundances smaller in the
turnoff stars than in the red giants on the order of the order of
30% or 0.13 dex (Korn et al. 2007; Lind et al. 2008; Nordlander
et al. 2012; Gruyters et al. 2013).

Systematic differences were also found for open clusters
with metallicities closer to solar such as M 67 (Önehag et al.
2014), NGC 5822, or IC 4756 (differences higher than 0.15 dex
for Na, Si, and Ti; Pace et al. 2010).

5 By definition, [X/Y] ≡ log10(NX/NY )star − log10(NX/NY )�, where NX
and NY are the abundances of element X and element Y respectively.

The assumption of local thermodynamic equilibrium (LTE)
may introduce systematic errors and abundance trends when an-
alyzing stars covering large intervals of effective temperatures,
surface gravities and metallicities. For instance, Randich et al.
(2006) exposes that the Na difference between dwarfs and giants
in M 67 can be explained by NLTE effects that are larger for cool
giants than for warm dwarfs (Mashonkina et al. 2000).

The depletion of some elements could also be caused by the
atomic diffusion (pushing heavier elements in the direction of
increasing pressure and temperature) that takes place during the
main sequence lifetime of the star and modifies the chemical
composition of the stellar atmosphere. The effect is element-
specific since radiative levitation reduces the gravitational accel-
eration (caused by the interaction of photons with gas particles)
and acts selectively on different atoms and ions. When the star
evolves toward the red giant branch, elements previously drained
from the surface are mixed up again as the outer convection zone
gradually reaches deeper layers.

Additionally, as shown in Blanco-Cuaresma et al. (2014a),
when simultaneously deriving the effective temperature, surface
gravity and metallicity from spectra, degeneracies among those
parameters lead to correlations where lower metallicities are
found for lower surface gravities and vice versa.
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Table 2. Iron abundances from neutral lines when using two
slightly different normalization processes, and comparison to literature
metallicities.

[Fe I/H]1 [Fe I/H]2 ∆Cont ?Cluster x̄w σw ∆Lit x̄w σw ∆Lit
Collinder350 –0.10 – – 0.00 – – –0.10 1
IC 2714 –0.12 0.02 –0.14 –0.08 0.10 –0.10 –0.04 6
IC 4651 0.00 0.03 –0.12 0.06 0.16 –0.06 –0.06 8
IC 4756 –0.09 0.04 –0.11 0.00 0.07 –0.02 –0.09 4
M 67 –0.06 0.04 –0.06 0.00 0.13 0.00 –0.06 42
Melotte111 –0.08 0.01 –0.08 0.00 0.09 0.00 –0.08 5
Melotte20 0.03 – –0.11 0.18 – 0.04 –0.15 1
Melotte22 –0.06 – –0.05 0.09 – 0.10 –0.15 1
Melotte71 –0.09 – 0.18 –0.02 – 0.25 –0.07 1
NGC 1817 –0.23 0.02 –0.12 –0.11 0.02 0.00 –0.12 3
NGC 2099 –0.03 – –0.05 0.11 – 0.09 –0.14 1
NGC 2251 –0.09 – 0.00 –0.01 – 0.08 –0.08 1
NGC 2360 –0.10 0.03 –0.07 –0.07 0.09 –0.04 –0.03 7
NGC 2423 0.02 0.01 –0.06 0.09 0.07 0.01 –0.07 2
NGC 2447 –0.13 0.02 –0.10 –0.03 0.09 0.00 –0.10 6
NGC 2477 –0.02 0.02 –0.09 0.02 0.08 –0.05 –0.04 29
NGC 2539 –0.04 0.03 –0.02 0.00 0.10 0.02 –0.04 7
NGC 2547 –0.13 – 0.03 –0.06 – 0.10 –0.07 1
NGC 2567 –0.14 0.01 –0.10 –0.09 0.09 –0.05 –0.05 4
NGC 2632 0.10 0.03 –0.10 0.20 0.11 0.00 –0.10 13
NGC 3532 –0.12 0.03 –0.12 –0.06 0.09 –0.06 –0.06 3
NGC 3680 –0.12 0.04 –0.11 –0.06 0.13 –0.05 –0.06 5
NGC 4349 –0.16 0.03 –0.09 –0.12 0.10 –0.05 –0.04 3
NGC 5822 –0.12 0.01 –0.20 –0.02 0.09 –0.10 –0.10 2
NGC 6475 0.04 – 0.02 0.15 – 0.13 –0.11 1
NGC 6494 –0.12 0.01 –0.08 –0.06 0.09 –0.02 –0.06 4
NGC 6633 –0.08 0.02 0.00 0.01 0.08 0.09 –0.09 4
NGC 6705 –0.01 0.01 –0.13 –0.04 0.11 –0.16 0.03 2
NGC 6811 –0.10 0.00 –0.14 –0.02 0.07 –0.06 –0.08 2
NGC 6940 0.04 – 0.03 0.09 0.07 0.08 –0.05 1
NGC 752 –0.07 0.01 –0.05 –0.02 0.07 0.00 –0.05 7

Notes. [Fe I/H]1 normalized with a median filter window of 0.10 nm,
[Fe I/H]2 normalized with a window of 0.01 nm, ∆Lit corresponds to the
difference with literature metallicities (see Table 1), ∆Cont represents
the difference between [Fe I/H]1 and [Fe I/H]2. The number of stars is
indicated in the last column (?).

Consequently, chemical abundances derived for stars in dif-
ferent evolutionary stages might be affected by NLTE effects,
atomic diffusion processes, and correlations from atmospheric
parameter determinations. The NLTE effects can be partly can-
celed out only for solar dwarfs by performing differential analy-
sis (see Sect. 3.2), and the effects from parameter determinations
can be reduced by working with [X/Fe] ratios6. Additionally, to
control these effects in our work, we decided to divide each clus-
ter into two subgroups formed of dwarfs and giant stars (i.e.,
log(g) ≤ 3.5 dex).

It is worth noting that the outlier detection process (see
Sect. 3.3) was executed at this subgroup level for each cluster,
otherwise we would have detected a significant number of false
outliers due to these stellar processes.

In Fig. 5 we present the chemical pattern for M 67, one of
the clusters with a high number of spectra in our dataset. The
signature is different for each subgroup and the elemental abun-
dance dispersion is slightly lower when we subdivide clusters
per evolutionary stages.

The chemical differences for IC 4651, M 67, NGC 2447,
NGC 2632, and NGC 3680 stars in various evolutionary stages

6 [X/Fe] = [X/H] − [Fe/H].

Fig. 3. Hertzsprung-Russell diagram for M 67 with Yonsei-Yale
isochrones (three different ages; Demarque et al. 2004), color scale cor-
responding to the neutral iron abundance, and size represents abundance
dispersion.

Fig. 4. Hertzsprung-Russell diagram for M 67 with Yonsei-Yale
isochrones (three different ages; Demarque et al. 2004), color scale
corresponding to the silicon abundance, and size represents abundance
dispersion.

for each analyzed element are shown in Table 3. We observe
that Si I, and Na I are enhanced for evolved stars with increases
higher than 0.10 dex. We priorize abundances for neutral ele-
ments when possible since we have more lines for them. The
rest present smaller variations that in most of the cases fall inside
the error margins (∼0.05 dex). For a better visual inspection, the
iron and silicon abundances for M 67 are shown in Figs. 3 and 4,
respectively.

An alternative approach to visually evaluating the chemical
differences between subgroups is to reduce the 17 dimensions to
two components using PCA as shown in Fig. 6. Dwarfs reside in
a clearly different parameter space from giants, showing that the
subgroups have distinct chemical patterns.

Regardless of whether these abundance enhancements are
real or due to systematic errors (e.g., model assumptions, data
treatment), they have implications that we cannot ignore for the
chemical tagging technique when applied to stars in very differ-
ent evolutionary stages, which is the reason why we decided to
separate dwarfs from giants in our experiment.
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Fig. 5. Average chemical abundances (top), dispersion (middle), and mean number of lines (bottom) used for M 67 stars (left) and divided into two
stellar-type groups (right). All the abundance ratios are referenced to iron except iron itself, which is relative to hydrogen.

Table 3. Chemical differences for stars in different evolutionary stages.

IC 4651 M 67 NGC 2447 NGC 2632 NGC 3680
D ∆G D ∆G D ∆G D ∆G D ∆G

Ir
on

pe
ak

[Fe I/H] 0.02 –0.04 –0.04 –0.03 –0.12 –0.01 0.11 –0.04 –0.10 –0.03
[Fe II/Fe] 0.04 –0.07 0.00 –0.01 0.00 –0.01 0.05 –0.05 0.01 –0.02
[V I/Fe] 0.06 0.01 0.07 0.00 0.06 –0.02 0.07 –0.03 0.09 –0.05
[Cr I/Fe] 0.00 0.02 –0.01 0.01 0.01 0.01 0.03 0.01 0.01 –0.01
[Cr II/Fe] 0.07 –0.05 0.01 0.02 0.04 –0.03 0.05 –0.01 0.06 –0.04
[Mn I/Fe] 0.04 0.03 0.02 0.03 –0.04 0.04 0.06 –0.02 –0.02 0.02
[Co I/Fe] 0.04 –0.01 0.06 –0.03 0.00 –0.01 0.02 –0.01 0.01 –0.02
[Ni I/Fe] –0.01 0.00 –0.01 0.01 –0.09 0.04 –0.02 0.03 –0.06 0.02

α
el

em
en

ts [Mg I/Fe] 0.06 0.01 0.07 0.07 0.02 0.08 –0.01 0.05 0.07 0.07
[Si I/Fe] 0.08 0.09 0.06 0.10 0.03 0.07 0.05 0.13 0.05 0.12
[Ca I/Fe] 0.05 –0.05 0.04 –0.02 0.05 0.03 0.03 0.01 0.07 –0.05
[Ti I/Fe] 0.00 0.02 0.02 0.00 0.01 0.04 –0.02 0.00 0.01 0.01
[Ti II/Fe] –0.04 0.07 –0.01 0.04 –0.04 0.06 –0.07 0.06 –0.02 0.06

O
th

er
s [Na I/Fe] 0.01 0.29 0.01 0.20 –0.09 0.33 0.03 0.31 –0.03 0.18

[Sc II/Fe] –0.04 0.08 –0.01 0.05 –0.07 0.07 –0.05 0.09 –0.04 0.08
[Ba II/Fe] –0.04 0.01 –0.13 –0.03 0.25 –0.05 –0.09 0.08 0.00 0.08
[Y II/Fe] 0.01 –0.01 0.01 –0.06 0.10 0.00 –0.01 0.03 0.07 –0.04

? 6 2 28 14 3 3 11 2 2 3

Notes. Dwarfs (D) values and differences relative to giants (G) where G = D + ∆G. Iron abundances from neutral lines ([Fe I/H]) were used as a
proxy for total iron abundance ([Fe/H]). The number of stars is indicated in the last row (?).

4.3. Cluster homogeneity

To evaluate the viability of the chemical tagging technique,
we performed a blind chemical tagging experiment designed
to recover the initial stellar groups by only using the chemi-
cal abundances and the total number of clusters. We note that
we discarded stars considered outliers based on their chemical
signature, which should make the task easier than a real scenario
with unknown stellar groups (i.e., field stars).

The K-Means method (also known as Lloyd’s algorithm,
Lloyd 1982) is a well-established machine learning/clustering
algorithm for which the benefits and drawbacks have already
been widely studied. Its simplicity and the use of the number
of clusters that we want to find as an input parameter makes this
algorithm ideal for our experiment.

K-Means aims to partition the observations (one observation
would be one star with its measured abundances) into K clusters

in which each observation belongs to the cluster with the near-
est mean (called centroid). Given a fixed number of clusters,
K-Means clustering is reduced to an optimization problem where
it finds the K centroids and assigns the observations to the near-
est one, such that the squared distances are minimized.

The election of the number of clusters is usually a limita-
tion if no a priori information is available, but in our case we
provided the real number of clusters. Other known drawbacks
are that this algorithm tends to find clusters of comparable spa-
tial extent, it often incorrectly cuts the borders in between clus-
ters (the algorithm optimizes cluster centers, not cluster borders),
and the final results might depend on the initial position of the
centroids. To address the last drawback, we used a variation of
the algorithm named K-Means++ which optimizes the position
of the initially random centroid with a probability proportional
to its squared distance from the closest observation (Arthur &
Vassilvitskii 2007).
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Fig. 6. Abundances represented by the first two principal components.
The surface gravity of each star is indicated by the color scale bar.

To evaluate the goodness of the clustering, we used the fol-
lowing well-known metrics

1. V-measure7 (Hirschberg & Rosenberg 2007) is a harmonic
mean between homogeneity and completeness:

v = 2 ×
homogeneity × completeness
homogeneity + completeness

, (3)

(a) Homogeneity: a clustering result satisfies homogeneity if
all of its predicted clusters contain only data points that
are members of one real open cluster. Score is between
0.0 and 1.0 and the latter stands for perfectly homoge-
neous labeling.

(b) Completeness: a clustering result satisfies completeness
if all the data points that are members of a given real open
cluster are elements of the same predicted cluster. Score
is between 0.0 and 1.0 and the latter stands for perfectly
complete labeling.

2. Silhouette coefficient (Rousseeuw 1987): measures the con-
cepts of cluster cohesion (favoring models that contain
tightly cohesive clusters) and cluster separation (favoring
models that contain highly separated clusters). The coeffi-
cient is calculated as

s =
dinter − dintra

max (dintra, dinter)
, (4)

where dintra is the mean intra-cluster distance and dinter is
the mean nearest-cluster distance. Negative values (never
smaller than −1) indicate that most of the stars are assigned
to a incorrect cluster, values close to zero indicate the exis-
tence of overlapping clusters, and values close to 1.0 indicate
that the stars of a given cluster are similar to each other and
well-separated from other clusters.

The clustering configurations that maximizes the V-measure and
the mean silhouette coefficient is the best although it should be
taken into account that the silhouette is usually reduced when
adding more dimensions. We found the best results when the
clustering algorithm is run separately in groups divided by stellar
types (i.e., dwarfs and giants) and with the first five principal
components (built from the 17 abundances; see Table 4).

7 The “V” stands for “validity”, in the sense of the goodness of a clus-
tering solution.

Fig. 7. Dwarfs represented using the first two components of PCA.
Background colors correspond to the clusters found by the K-Means
algorithm. Centroids are marked with white crosses.

Fig. 8. Giants represented using the first two components of PCA.
Background colors correspond to the clusters found by the K-Means
algorithm. Centroids are marked with white crosses.

It is interesting to see that we cover 85% of the variance
with four or five principal components, contrary to Ting et al.
(2012) where six or seven components are needed. Our abun-
dances were derived homogeneously, but our sample is smaller.
We have 31 clusters and Ting et al. (2012) analyze 78 clusters,
which can lead to a bigger diversity and thus, more components
are needed to cover the same amount of variance.

For all the configurations, the silhouette coefficient is under
0.50, indicating that the structure found is reasonable but weak.
There is a non-negligible chemical overlapping among stars of
different clusters.

The clustering analysis groups together stars from different
open clusters (see Tables 6 and 7; Figs. 7 and 8) pointing out that,
for the analyzed elemental abundances, the clusters’ chemical
signature are not significantly different. The abundance patterns
change relatively smoothly in the chemical space as shown in
Figs. 9 and 10 (especially considering that the typical uncertainty
is ∼0.05 dex), complicating the separation of stars that belong to
different clusters.

In addition to the K-Means method, we tested other known
machine learning algorithms such as affinity propagation (Frey
& Dueck 2007) and DBSCAN (Ester et al. 1996). These do
not require specifying the number of clusters to be found as
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Table 4. K-Means++ clustering metrics for different stellar groups and
dimensions.

Var. Homogeneity Completeness V-Measure Silhouette
D x̄ σ x̄ σ x̄ σ x̄ σ

A
ll

31
cl

us
te

rs
(1

77
st

ar
s)

2 72.9% 0.72 0.01 0.61 0.01 0.66 0.01 0.40 0.01
3 82.2% 0.79 0.01 0.67 0.01 0.73 0.01 0.36 0.01
4 86.1% 0.79 0.01 0.68 0.01 0.73 0.01 0.32 0.01
5 88.8% 0.78 0.01 0.68 0.01 0.72 0.01 0.29 0.01
6 91.0% 0.78 0.01 0.68 0.01 0.73 0.01 0.27 0.01
7 93.1% 0.78 0.01 0.69 0.01 0.73 0.01 0.26 0.01
8 94.6% 0.78 0.01 0.69 0.01 0.73 0.01 0.24 0.01
9 95.6% 0.77 0.01 0.68 0.01 0.73 0.01 0.24 0.01
10 96.6% 0.77 0.01 0.68 0.01 0.73 0.01 0.23 0.01
11 97.5% 0.77 0.01 0.68 0.01 0.72 0.01 0.23 0.01
12 98.2% 0.77 0.01 0.68 0.01 0.72 0.01 0.22 0.01
13 98.8% 0.77 0.01 0.68 0.01 0.72 0.01 0.21 0.01
14 99.2% 0.77 0.01 0.69 0.01 0.72 0.01 0.21 0.01
15 99.6% 0.77 0.01 0.69 0.01 0.72 0.01 0.21 0.01
16 99.9% 0.77 0.01 0.69 0.01 0.73 0.01 0.21 0.01
17 100.0% 0.76 0.02 0.68 0.01 0.72 0.01 0.20 0.01

17∗ 100.0% 0.76 0.02 0.68 0.01 0.72 0.01 0.20 0.01

D
w

ar
fs

11
cl

us
te

rs
(6

0
st

ar
s)

2 62.9% 0.81 0.01 0.61 0.01 0.69 0.01 0.42 0.01
3 73.3% 0.75 0.01 0.57 0.01 0.65 0.01 0.38 0.01
4 79.9% 0.83 0.02 0.63 0.02 0.71 0.02 0.34 0.01
5 84.3% 0.83 0.02 0.63 0.02 0.72 0.02 0.32 0.01
6 88.1% 0.78 0.03 0.59 0.03 0.67 0.03 0.28 0.01
7 91.1% 0.78 0.03 0.60 0.02 0.68 0.03 0.24 0.01
8 93.6% 0.79 0.04 0.61 0.03 0.69 0.03 0.23 0.01
9 95.4% 0.79 0.04 0.61 0.03 0.69 0.03 0.21 0.01
10 96.7% 0.78 0.04 0.61 0.03 0.68 0.03 0.21 0.01
11 97.5% 0.77 0.04 0.60 0.03 0.67 0.03 0.20 0.01
12 98.2% 0.77 0.04 0.60 0.03 0.68 0.03 0.20 0.01
13 98.8% 0.77 0.04 0.60 0.03 0.68 0.04 0.19 0.01
14 99.2% 0.77 0.04 0.60 0.03 0.67 0.03 0.19 0.01
15 99.6% 0.78 0.04 0.61 0.03 0.68 0.04 0.19 0.01
16 99.9% 0.77 0.04 0.60 0.03 0.67 0.03 0.19 0.01
17 100.0% 0.77 0.04 0.60 0.03 0.67 0.03 0.18 0.01

17∗ 100.0% 0.77 0.04 0.60 0.03 0.67 0.03 0.18 0.01

G
ia

nt
s

26
cl

us
te

rs
(1

17
st

ar
s)

2 71.1% 0.71 0.01 0.64 0.01 0.67 0.01 0.35 0.01
3 83.4% 0.79 0.01 0.71 0.01 0.75 0.01 0.33 0.01
4 87.7% 0.79 0.01 0.72 0.01 0.75 0.01 0.29 0.01
5 90.4% 0.81 0.01 0.74 0.01 0.78 0.01 0.28 0.02
6 92.6% 0.80 0.01 0.73 0.01 0.76 0.01 0.26 0.01
7 94.1% 0.80 0.01 0.74 0.01 0.77 0.01 0.24 0.01
8 95.4% 0.81 0.01 0.74 0.01 0.77 0.01 0.24 0.01
9 96.4% 0.81 0.01 0.74 0.01 0.77 0.01 0.23 0.01
10 97.2% 0.81 0.01 0.75 0.01 0.78 0.01 0.22 0.01
11 98.0% 0.81 0.01 0.75 0.02 0.78 0.01 0.22 0.01
12 98.6% 0.81 0.01 0.76 0.01 0.78 0.01 0.22 0.01
13 99.1% 0.81 0.02 0.76 0.01 0.78 0.01 0.21 0.01
14 99.5% 0.81 0.01 0.75 0.01 0.78 0.01 0.21 0.01
15 99.8% 0.81 0.01 0.75 0.02 0.78 0.01 0.21 0.01
16 99.9% 0.81 0.01 0.75 0.01 0.78 0.01 0.20 0.01
17 100.0% 0.81 0.01 0.76 0.01 0.78 0.01 0.21 0.01

17∗ 100.0% 0.81 0.01 0.76 0.01 0.78 0.01 0.21 0.01

Notes. The number of dimension (D) refers to the number of prin-
cipal components used, except those marked with (∗) where the non-
transformed abundances were used. The covered variance (Var.) is
presented in the second column. The V-Measure is calculated from
the homogeneity and completeness values. All the parameters have an
average value and a standard deviation that comes from 100 random
iterations.

an input, but need other distance parameters that are going to
have a significant impact on the number of clusters automati-
cally found by the algorithm. In our case, to do a fair comparison
with K-Means we have fine-tuned the input parameters to obtain

Table 5. Benchmark of different clustering algorithms separated by stel-
lar group.

D N H C V S ?

A
ll

31
cl

us
te

rs
(1

77
st

ar
s) K-Means++ 5 – 0.78 0.68 0.72 0.29 100%

Affinity prop. 5 29 0.77 0.69 0.72 0.30 100%
DBSCAN 5 30 0.48 0.70 0.57 0.03 100%
Mitschang (0.68/0) 17∗ 42 0.85 0.66 0.74 0.11 100%
Mitschang (0.68/2) 17∗ 32 0.84 0.66 0.74 0.12 89%
Mitschang (0.90/0) 17∗ 42 0.86 0.66 0.75 0.11 97%
Mitschang (0.90/2) 17∗ 32 0.84 0.66 0.74 0.13 86%

D
w

ar
fs

11
cl

us
te

rs
(6

0
st

ar
s)

K-Means++ 5 – 0.83 0.63 0.72 0.32 100%
Affinity prop. 5 13 0.85 0.61 0.71 0.31 100%
DBSCAN 5 13 0.59 0.69 0.64 0.01 100%
Mitschang (0.68/0) 17∗ 11 0.82 0.59 0.69 0.07 98%
Mitschang (0.68/2) 17∗ 10 0.81 0.59 0.68 0.11 95%
Mitschang (0.90/0) 17∗ 11 0.84 0.59 0.69 0.09 90%
Mitschang (0.90/2) 17∗ 10 0.83 0.58 0.68 0.13 87%

G
ia

nt
s

26
cl

us
te

rs
(1

17
st

ar
s) K-Means++ 5 31 0.81 0.74 0.78 0.28 100%

Affinity prop. 5 24 0.79 0.74 0.76 0.28 100%
DBSCAN 5 28 0.66 0.83 0.74 0.06 100%
Mitschang (0.68/0) 17∗ 31 0.84 0.70 0.77 0.12 100%
Mitschang (0.68/2) 17∗ 21 0.82 0.71 0.76 0.14 83%
Mitschang (0.90/0) 17∗ 31 0.84 0.70 0.77 0.12 100%
Mitschang (0.90/2) 17∗ 21 0.82 0.71 0.76 0.14 83%

Notes. The number of dimension (D) refers to the number of prin-
cipal components used, except those marked with (∗) where the non-
transformed abundances were used. The number of predicted clus-
ters (N) is not reported for the K-Means++ algorithms because it is
one of the parameters of the method and the real number was used. The
V-Measure is calculated from the homogeneity (H) and completeness
(C) values. The silhouette coefficient (S) and the number of classified
stars (?) are reported in the last two columns.

Fig. 9. Stellar abundances averaged per cluster using only dwarf stars.

a number of clusters close to the real one. As input values, we
used the first five principal components, which cover approx-
imately 85% of the variance. To complement the comparison,
we also implemented the classification algorithm developed by
Mitschang et al. (2013) which does not need any extra input pa-
rameters and it also automatically finds the number of clusters.
For this method we use the 17 elements directly because this
approach was calibrated with real abundances and not principal
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Fig. 10. Stellar abundances averaged per cluster using only giant stars.

components. Four different configurations have been executed
using the following criteria: limiting the probability of belonging
to the cluster to be higher than 68% or 90%; discarding clusters
found with only two stars or not discarding any resulting cluster.
The results are shown in Table 5; all the methods have a similar
behavior in terms of V-Measure except DBSCAN, which is the
worse behaving with dwarf stars (it might be more sensitive to
the lower number of stars).

To estimate an order of magnitude of the star contamination
level, we linked each group (found by the clustering algorithms)
to the open cluster that contains the highest number of stars (un-
less the open cluster was already assigned) and we found that
around 30−50% of the stars are not assigned to their expected
cluster. The higher the number of open clusters included in the
analysis, the higher the contamination percentage. Considering
that it has been estimated that about 108 clusters were dissolved
in the Galaxy (Bland-Hawthorn & Freeman 2004), we expect a
severe contamination when applying the chemical tagging tech-
nique to field stars in order to recover co-natal aggregates.

For the giant case, where the number of stars is higher, there
might be a correlation between the first two principal compo-
nents and the stellar ages (i.e., cluster ages). In Fig. 11 we see
that the stars with a lower value in the first two components be-
long to younger clusters, while older stars have lower values in
the first component but higher in the second one. The correla-
tion seems to follow a semi-circular path in that visualization of
the PCA space (although the correlation seems stronger for the
first component). Thus, this keeps open the possibility of finding
co-eval aggregates (stars born at the same period although not
necessarily from the same molecular cloud) by using the chemi-
cal tagging technique.

4.4. The role of different elements

The selection of measured abundances also has an impact on the
clustering algorithms, hence on the potential of the chemical tag-
ging technique. The best elements among those included in this
study are those that can be measured with high precision (i.e.,
low dispersion) and show no correlation among them (e.g., al-
pha elements have similar trends). It is also important to have
elements produced in different processes with significantly dif-
ferent yields.

Working with high-resolution and high S/N spectra con-
tributes to better precision, even though not all the elements can
be easily measured for all kinds of stellar types because their

Fig. 11. Stars represented in the PCA space using the first two principal
components. The stellar ages are indicated by the color scale bar.

Table 6. Clusters found for dwarf stars and their real open clusters using
five components.

Coverage Age
Cluster OC Stars Cluster OC (Gyr)
N. 01 D IC 4651 6 100% 100% 1.14

N. 02 D M 67 8 89% 29% 4.09
NGC 3680 1 11% 50% 1.19

N. 03 D

Melotte111 4 57% 80% 0.71
IC 4756 1 14% 100% 0.67

Melotte20 1 14% 100% 0.06
NGC 6475 1 14% 100% 0.25

N. 04 D

Melotte111 1 25% 20% 0.71
Melotte22 1 25% 100% 0.11
NGC 2547 1 25% 100% 0.04
NGC 3680 1 25% 50% 1.19

N. 05 D M 67 12 100% 43% 4.09
N. 06 D M 67 4 100% 14% 4.09
N. 07 D M 67 2 100% 7% 4.09
N. 08 D M 67 2 100% 7% 4.09
N. 09 D NGC 2447 3 100% 100% 0.56
N. 10 D NGC 2632 7 100% 64% 0.63
N. 11 D NGC 2632 4 100% 36% 0.63

Notes. The clustering algorithm assigns numbers to each identified
group as indicated in the first column. The number of stars are pre-
sented next to the real open cluster to which they belong. The coverage
indicates the percentage of stars found by comparing the total number
of stars in the identified group to the number in the real open cluster.

absorption lines can be too weak or highly blended. In this con-
text, high-quality atomic data and reliable physical models are
fundamental.

A principal component analysis can help us to understand
the role of the measured abundances by looking at the weights
assigned to each one. Elements with similar weights have similar
behaviors and they do not contribute significantly to differenti-
ate between clusters. In Fig. 12 we observe that the elements
that contribute more to differentiate stars are the heavier ele-
ments (Y II, Ba II), Fe I, Mg I, Si I, and Na I. To fully take
advantage of this information, it is desirable to include a higher
number of stars in future studies, especially for the dwarf sub-
group, to extend the analysis to include other elements and to
correct NLTE effects.
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Table 7. Clusters found for giant stars and their real open clusters using
five components.

Coverage Age
Cluster OC Stars Cluster OC (Gyrs)

N. 01 G

IC 2714 2 29% 33% 0.25
NGC 2447 2 29% 67% 0.56
NGC 2567 2 29% 50% 0.28
NGC 2539 1 14% 14% 0.49

N. 02 G NGC 2477 10 91% 34% 0.88
IC 4651 1 9% 50% 1.14

N. 03 G IC 2714 4 80% 67% 0.25
NGC 6494 1 20% 25% 0.30

N. 04 G NGC 752 7 100% 100% 1.12

N. 05 G
Collinder350 1 33% 100% 0.41
NGC 2567 1 33% 25% 0.28
NGC 5822 1 33% 50% 0.89

N. 06 G NGC 6705 2 100% 100% 0.25
N. 07 G NGC 1817 3 100% 100% 0.41

N. 08 G NGC 3532 1 50% 33% 0.35
NGC 5822 1 50% 50% 0.89

N. 09 G NGC 2539 2 67% 29% 0.49
NGC 6633 1 33% 25% 0.43

N. 10 G

NGC 6633 3 50% 75% 0.43
NGC 2251 1 17% 100% 0.27
NGC 2447 1 17% 33% 0.56
NGC 3532 1 17% 33% 0.35

N. 11 G NGC 2360 2 67% 29% 0.56
Melotte71 1 33% 100% 0.23

N. 12 G
NGC 4349 3 60% 100% 0.21
NGC 2360 1 20% 14% 0.56
NGC 2567 1 20% 25% 0.28

N. 13 G M 67 10 100% 71% 4.09
N. 14 G M 67 3 100% 21% 4.09
N. 15 G M 67 1 100% 7% 4.09
N. 16 G NGC 3680 1 100% 33% 1.19
N. 17 G NGC 3680 2 100% 67% 1.19

N. 18 G
NGC 2477 8 80% 28% 0.88
NGC 2423 1 10% 50% 1.00
NGC 6940 1 10% 100% 0.72

N. 19 G NGC 6494 3 75% 75% 0.30
NGC 3532 1 25% 33% 0.35

N. 20 G IC 4651 1 100% 50% 1.14

N. 21 G NGC 2477 7 88% 24% 0.88
NGC 2539 1 13% 14% 0.49

N. 22 G NGC 6811 2 100% 100% 0.64

N. 23 G NGC 2360 4 80% 57% 0.56
IC 4756 1 20% 33% 0.67

N. 24 G NGC 2632 2 100% 100% 0.63

N. 25 G IC 4756 2 50% 67% 0.67
NGC 2539 2 50% 29% 0.49

N. 26 G

NGC 2477 4 57% 14% 0.88
NGC 2099 1 14% 100% 0.45
NGC 2423 1 14% 50% 1.00
NGC 2539 1 14% 14% 0.49

Notes. The column description is the same as for Table 6.

5. Conclusions
We compiled 2133 high-resolution spectra acquired with dif-
ferent instruments (i.e., NARVAL, HARPS, UVES) in the field
of view of known open clusters. We implemented an auto-
matic process based on iSpec to homogenize the observa-
tions, co-add them, derive atmospheric parameters and deter-
mine chemical abundances using a differential approach. After
filtering low S/N spectra, non-members by radial velocity,
non-FGK and/or chemically peculiar stars, we were left with a

Fig. 12. PCA weights of the elements per stellar subgroup.

dataset of 177 stars covering 31 open clusters with abundances
for 17 species corresponding to 14 different elements.

By slightly varying our continuum normalization process,
we show how inhomogeneities in the spectral analysis imply
systematic uncertainties in, for instance, the derived chemical
abundances. Using the heterogeneous compilations from the lit-
erature to draw scientific conclusions about extensive topics such
as the chemical history of our Galaxy is not recommended.

We identified distinct chemical signatures for stars in dif-
ferent evolutionary stages that belong to the same open cluster.
The origin of these differences may be explained by NLTE ef-
fects (minimized for solar dwarfs thanks to the applied differen-
tial approach in the abundance determination), atomic diffusion,
mixing processes and correlations from atmospheric parame-
ter determinations. Regardless of whether these abundance en-
hancements are real or artificial, they have important implica-
tions for the chemical tagging technique when applied to stars in
different evolutionary stages.

To evaluate the viability of the chemical tagging technique
when analyzing a huge quantity of spectra in an automatized
fashion, we performed experiments where we applied machine
learning algorithms to blindly group stars based on their chem-
ical abundances. We should note that our analysis was mainly
limited to nearby clusters and it covers a narrow metallicity
range. We found that the analyzed open clusters overlap in the
chemical space for the 17 elemental abundances analyzed and
it is not possible to completely recover co-natal stars (born
from the same cloud at the same time). It is worth noting
that chemical outliers were already discarded and the cluster-
ing analysis was performed individually in subgroups with stars
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in similar evolutionary stages. Thus, in a real scenario where the
chemical tagging technique would be applied to a greater num-
ber of field stars, we expect to have a high level of overlapping
that would severely affect the success rate of this technique for
recovering co-natal aggregates.

In Mitschang et al. (2014), the authors conducted the
first blind chemical tagging experiment to find stellar groups
from 714 field stars. They also found that the viability of finding
co-natal groups was doubtful, but they claimed that the tech-
nique can still identify co-eval groups of stars (stars born at the
same period). In our study, we observed a possible correlation
between the first principal components and the stellar ages for
giant stars. The door remains open for the possibility of using
the chemical tagging technique to find co-eval aggregates.

It is intuitive to conclude that increases in chemical dimen-
sionality lead to improvements in the clustering experiments, al-
though the difficulty in deriving abundances for some elements
(e.g., weak absorption lines, fewer lines, blended regions) at a
given resolution could also yield greater uncertainties and poten-
tial scatter. We showed that not all the elements have the same
discriminatory power (as previous studies have forseen, such
as Freeman & Bland-Hawthorn 2002; Mitschang et al. 2013),
some tend to act in concert while others contribute significantly
such as the heavy n-capture element Ba. For future analysis, it
would be interesting to include other elements such as La, Nd,
and Eu, which are formed through similar processes that produce
Ba (slow and rapid n-capture processes in low-mass AGB stars,
Busso et al. 2001; and core-collapse supernovae, Kratz et al.
2007). It would be also necessary to explore open clusters with
lower metallicities, where less line blending could make differ-
ent elements accessible.

There is also room to improve automatic analysis and spec-
tral modeling, for instance, incorporating NLTE effects and
averaged 3D model atmosphere. Time dependent 3D hydrody-
namical models (Pereira et al. 2013) are still computationally too
expensive as to use them for massive analysis, thus the averaged
3D models are a good compromise. These improvements could
reduce discrepancies among stars in different evolutionary stages
and achieve a higher degree of success when recovering clusters
using chemical abundances (Bergemann et al. 2012; Lind et al.
2012).
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