389 research outputs found

    Strongly Localized Magnetization Modes in Permalloy Antidot Lattices

    Get PDF
    Antidot lattices (ADLs) patterned into soft magnetic thin films exhibit rich ferromagnetic resonance (FMR) spectra corresponding to many different magnetization modes. One of the predicted modes is highly localized at the edges of the antidots; this mode is difficult to detect experimentally. Here we present FMR data for a permalloy thin film patterned into a square array of square antidots. Comparison of these data with micromagnetic simulations permits identification of several edge modes. Our simulations also reveal the effect of the antidot shape on the mode dispersion

    Magnetic Response of Aperiodic Wire Networks Based on Fibonacci Distortions of Square Antidot Lattices

    Get PDF
    The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1  = 1618 nm and d2  = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance (FMR) spectra were acquired for various directions of applied magnetic field. The DC magnetization curves exhibited pronounced step anomalies and plateaus that signal flux closure states. Although the Fibonacci distortion breaks the fourfold symmetry of a finite periodic square ADL, the FMR data exhibit fourfold rotational symmetry with respect to the applied DC magnetic field direction

    Ferromagnetic resonance study of eightfold artificial ferromagnetic quasicrystals

    Get PDF
    We have performed broadband (10 MHz–18 GHz) and narrowband (9.7 GHz) ferromagnetic resonance (FMR) measurements on permalloy thin films patterned with quasiperiodic Ammann tilings having eightfold rotational symmetry. We observed highly reproducible mode structures in the low-frequency, hysteretic regime in which domain walls and unsaturated magnetization textures exist. A minimum of 10 robust modes were observed in patterned samples, compared to the single uniform mode observed in unpatterned permalloy films. The field dependence and approximate eightfold rotational symmetry of the FMR spectra are in good agreement with micromagnetic simulations that confirm the importance of patterning for controlling static and dynamic magnetic response

    Controlled Magnetic Reversal in Permalloy Films Patterned into Artificial Quasicrystals

    Get PDF
    We have patterned novel Permalloy thin films with quasicrystalline Penrose P2 tilings and measured their dc magnetization and ferromagnetic resonance absorption. Reproducible anomalies in the hysteretic, low-field data signal a series of abrupt transitions between ordered magnetization textures, culminating in a smooth evolution into a saturated state. Micromagnetic simulations compare well to experimental dc hysteresis loops and ferromagnetic resonance spectra and indicate that systematic control of magnetic reversal and domain wall motion can be achieved via tiling design, offering a new paradigm of magnonic quasicrystals

    Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase

    Get PDF
    Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex

    Phase I and pharmacokinetic study of the polyamine synthesis inhibitor SAM486A in combination with 5-fluorouracil/leucovorin in metastatic colorectal cancer

    Get PDF
    Purpose: The purpose of our study was to determine the maximum-tolerated dose, dose-limiting toxicity, safety profile, and pharmacokinetics of the polyamine synthesis inhibitor SAM486A given in combination with 5-fluorouracil/leucovorin (5-FU/LV) in cancer patients.Experimental Design: Patients with advanced colorectal cancer were treated with 5-FU [bolus (400 mg/m(2)) followed by a 22-h infusion (600 mg/m(2))] and LV (200 mg/m(2)) and escalating doses of SAM486A, 1-3-h infusion daily for 3 days. Plasma sampling was performed to characterize the pharmacokinetics and pharmacodynamics of the combination.Results: Twenty-seven patients with metastatic colorectal cancer and 1 with pseudomyxoma peritonei were treated. Twenty-six patients received SAM486A in the combination at doses ranging from 25 to 150 mg/m(2)/day. Dose-limiting toxicity consisting of fatigue grade 3 was seen at 150 mg/m(2)/day. Other adverse events included neutropenia, hand and foot syndrome, nausea, vomiting, diarrhea, and constipation. Fifteen of 26 patients evaluable for best response according to the Southwest Oncology Group criteria achieved a partial response [8 (30%) of 26] or stable disease [9 (35%) of 26]. SAM486A did not influence the pharmacolkinetics of 5-FU, and SAM486A clearance was similar to that when used as a single agent.Conclusions: The novel molecular agent SAM486A is tolerable and safe in combination with a standard 5-FU regimen in patients with advanced colorectal cancer. The dose of SAM486A recommended for additional studies with this combination is 125 mg/m(2)/day. A disease-directed evaluation of SAM486A using this regimen is warranted
    corecore