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 13 

Abstract 14 

Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. 15 

PRR binding of their cognate ligand triggers a signaling network and activates an 16 

immune response. Activation of PRR signaling must be controlled prior to ligand binding 17 

to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis 18 

through FLAGELLIN-SENSITIVE 2 (FLS2) induces activation of mitogen activated 19 

protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that 20 

connects activated FLS2 to downstream MAPK cascades remains unknown. Here we 21 

report the identification of a differentially phosphorylated MAP kinase kinase kinase that 22 

also interacts with FLS2. Using targeted proteomics and functional analysis we show that 23 

MKKK7 negatively regulates flagellin-triggered signaling and basal immunity and this 24 

requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates 25 

MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive 26 

oxygen species burst downstream of FLS2, suggesting that MKKK7-mediated 27 

attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex. 28 

 29 

Synopsis 30 

This study reports a MAP kinase kinase kinase as a negative regulator of pattern recognition 31 

receptor signaling and immunity. MKKK7 represses FLS2 signaling upstream of MAPK activation 32 

and reactive oxygen species burst. 33 

·         MKKK7 co-immunoprecipitates with FLS2 34 

·         MKKK7 is transiently phosphorylated in response to flagellin perception 35 

·         Phosphorylation of specific MKKK7 residues is required for its immunoregulatory function 36 

 37 
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Introduction 2 

Initiation of basal plant defenses relies on the detection of pathogen-or microbe-associated 3 

molecular patterns (PAMPs or MAMPs) through pattern recognition receptors (PRRs) [1]. 4 

One of the best-characterized plant PRRs is FLAGELLIN-SENSITIVE 2 (FLS2), a leucine-5 

rich repeat (LRR) receptor kinase, which together with co-receptor BRASSINOSTEROID 6 

INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) recognizes a conserved 22-amino acid 7 

peptide (flg22) from bacterial flagellin [2-4]. PAMP perception induces immediate early 8 

responses, including the production of reactive oxygen species (ROS), ion fluxes across the 9 

plasma membrane, mitogen-activated protein kinase (MAPK) activation as well as later 10 

responses, such as activation of defense-related genes [5-8]. These immune responses 11 

eventually lead to a first line of defense called PAMP-triggered immunity (PTI). Successful 12 

pathogens overcome PTI by secreting or injecting a set of effectors into the host, which 13 

suppress key steps of PTI, resulting in interference of plant defense [9]. In turn, plants have 14 

evolved resistance (R) proteins that monitor the host targets of these effector molecules. 15 

Perception of effector-mediated modulation of these host target proteins leads to a strong 16 

defense response known as effector-triggered immunity (ETI) [9-13]. 17 

Tremendous progress has been made in unraveling molecular mechanisms of the signaling 18 

events leading to PTI and ETI, suggesting that they rely on similar components [6, 13]. 19 

Protein phosphorylation is essential in PRR signaling and for the activation of several 20 

PAMP-activated MAPK cascades [5, 14-16]. However, what connects upstream PRRs to 21 

downstream MAP kinase activation has remained an open question. Moreover, the nature of 22 

the MAP kinase kinase kinase (MAPKKK) acting to mediate flg22-induced MAPK activation 23 

remains a matter of debate [17, 18]. Only recently has the first gap been bridged between 24 

PRR activation and ROS burst, an early defense response mediated by NADPH oxidase 25 

RBOHD [19, 20]. In addition to positive regulation, mediated in part by phosphorylation, PRR 26 

complexes and their downstream signaling components must be under negative regulation 27 

to prevent activation in the absence of PAMPs and to allow rapid deactivation after PAMP 28 

signaling has been initiated [6]. Recent examples of negative regulators of Arabidopsis PTI 29 

include protein phosphatase PP2A, involved in down-regulating PAMP triggered signaling 30 

[21] and the BAK1-INTERACTING RECEPTOR-LIKE KINASE 2 (BIR2) that prevents 31 

formation of active signaling complexes prior to PAMP binding [22]. 32 

We, and others, have previously undertaken several large-scale phosphoproteomics 33 

approaches to identify proteins involved in early defense-related signaling events [16, 23-34 

25]. In our previous quantitative phosphoproteomic study, swift changes in phosphorylation 35 

of membrane-associated proteins were analyzed in response to flg22 and the fungal PAMP 36 

xylanase [23]. We identified a large set of differentially phosphorylated proteins, some of 37 
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which were subsequently characterized as important signaling components, including 1 

receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE1 (BIK1), RBOHD [19, 20, 2 

24, 26, 27] and RPM1-INTERACTING PROTEIN 4 (RIN4) [28]. We also identified several 3 

members of the MAPKKK family as differentially phosphorylated and describe the functional 4 

analysis of one of these MAPKKKs here.  5 

Comprising 80 members, the MAPKKK family is the largest group of MAPK pathway 6 

components, however relatively little is known about their function in plants [29].To date, in-7 

depth functional analysis has been performed for only a few MAPKKK family members [30, 8 

31]. Sequence analysis of the protein kinase catalytic domain revealed that Arabidopsis 9 

MAPKKKs fall into two major subtypes: MEKKs and RAF-like kinases [32]. MEKK subfamily 10 

members studied in more detail include Arabidopsis MEKK1, which activates MKK4 and 11 

MKK5 [18] as well as MKK1 and MKK2 [17, 33] in response to flg22 sensing. The orthologue 12 

of MEKK1 in Nicotiana tabacum (tobacco) NPK1, is involved in innate immunity and 13 

cytokinesis [30, 34] and tobacco MAPKKKα and tomato MAPKKKƐ are involved in regulating 14 

pathogen-induced cell death [35-37]. 15 

Our previous work has identified Arabidopsis MKKK7 (At3g13530, also known as 16 

MAP3Ke1), as a membrane-associated phosphoprotein [23]. Here we report the interaction 17 

of MKKK7 with FLS2 and outline its role in the attenuation of FLS2-mediated signaling. We 18 

show, using selective reaction monitoring (SRM), that several Serine residues in MKKK7 are 19 

differentially phosphorylated in response to flg22 sensing, and provide evidence that 20 

phosphorylation of two Serine residues is important for the regulation of MKKK7 function. 21 

Our work suggests that MKKK7 is a negative regulator of PAMP signaling and basal 22 

immunity in Arabidopsis, and acts early in PAMP signaling through its association with the 23 

FLS2 complex. 24 

 25 

Results 26 

 27 

FLS2 interacts with MKKK7  28 

To identify immediate early signaling components in the FLS2 pathway we performed co-29 

immunoprecipitation (co-IP) experiments with FLS2-GFP as bait in Arabidopsis. We 30 

immunoprecipitated FLS2-GFP with anti-GFP antibody coated beads and analyzed co-31 

precipitated proteins by liquid chromatography tandem mass spectrometry (LC-MS/MS). 32 

Among the proteins pulled down in the FLS2-GFP IP, we identified MKKK7 (At3g13530) 33 

through five peptides (Table I, Figure EV1 and Dataset EV1). The interaction appeared 34 

specific, as only one MKKK7 peptide with a low Mascot score was identified in one of three 35 

replicas of a similar co-IP using plasma membrane (PM) localized Lti6B-GFP [38] as a 36 

control (Table I and Dataset EV1). MKKK7 is a plasma membrane-associated protein that 37 
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was previously identified in our screen for differentially phosphorylated proteins after flg22 1 

treatment [23]. MKKK7 is a MAPKKK with a typical S/T kinase domain and is classified as a 2 

subgroup A4 of the MEKK subfamily [32]. Since we identified MKKK7 in two independent 3 

screens for signaling proteins in the FLS2 pathway we investigated its role in FLS2-4 

dependent signaling in more detail. We first verified the FLS2-MKKK7 association by 5 

repeating the co-IP with a GFP-binding protein in Arabidopsis transgenic plants expressing a 6 

functional YFP-MKKK7 fusion protein [39]. Both prior to stimulation with flg22 and at early 7 

time points post flg22 treatment, FLS2 co-immunoprecipitated with YFP-MKKK7 but not with 8 

Lti6B-GFP (Figure 1). These reciprocal co-IP results confirm the formation of a specific 9 

stable interaction between MKKK7 and FLS2. 10 

 11 

Flg22-triggered changes in MKKK7 phosphorylation 12 

We previously identified MKKK7 as a phospho-protein using a shotgun proteomics approach 13 

(Figure EV2, [23]). We were able to reproducibly quantify phosphorylation for two Serine 14 

residues (S503, S775

23

), but none of these residues were differentially phosphorylated in 15 

response to PAMP perception [ ]. We also measured changes of phosphorylation on two 16 

additional residues (S452 and S854), but for these residues the shotgun proteomics approach 17 

prevented us from confidently determining whether these changes were PAMP-induced. 18 

These phosphorylated Serine residues (pS452, pS503, pS775 and pS854) and an additional 19 

phosphorylated Serine residue (pS337 40) [ ], are located in the central domain of the protein, 20 

outside the kinase domain, in a region containing an armadillo (ARM)/HEAT repeat domain 21 

found in MKKK7 (Figure EV2) and homologous MAPKKKs in other plant species. The first 22 

three phosphorylated Serine residues (S337, S452 and S503) are conserved in MKKK7 23 

homologues from Brassicacea species, but not in more distantly related species such as 24 

tomato and apple (Figure EV3). The other two phosphorylated residues (S775 and S852

To reproducibly quantify phosphorylation of these 5 Serine residues in MKKK7 and several 27 

other residues in additional MAPK cascade members in response to flg22 perception, we 28 

developed selected reaction monitoring (SRM) assays using synthetic phosphopeptides as 29 

reference molecules (Dataset EV2). SRM assays were set up using light (

) are 25 

conserved in closely related species as well as more distantly related species. 26 

14N) synthetic 30 

phosphopeptides and detection of the corresponding heavy (15N) endogenous 31 

phosphopeptides was validated in phospho-enriched samples from metabolically labeled 32 

Arabidopsis cell cultures. Relative quantification was done by spiking the 15

In phospho-enriched total extracts of cultured Arabidopsis cells, analyzed at 0, 5, 10, 20 and 36 

30 minutes after flg22 treatment, we reliably quantified three out of five MKKK7 37 

N samples with 33 

the light synthetic phosphopeptides and expressing changes in phosphorylation as a ratio of 34 

heavy endogenous phosphopeptide over light synthetic phosphopeptide. 35 
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phosphopeptides, containing pS residues at position S452, S775 and S337 (Figure 2A to C) 1 

while phosphorylation of S503 and S852 could only be detected in the light synthetic peptides 2 

but not as heavy endogenous phosphopeptides. Temporal analysis in response to flg22 3 

treatment revealed a sharp transient differential phosphorylation for S452 at 5 min post-4 

induction (Figure 2A). Differential phosphorylation of S775 was more gradual, suggesting the 5 

involvement of different upstream kinases (Figure 2B). The third quantified S337 showed no 6 

significant increase in phosphorylation in response to flg22 treatment (Figure 2C). As 7 

expected, temporal analysis of defense-associated MAP kinase MPK6, showed a swift 8 

increase in phosphorylation of both T220 and Y222

16

 residues in the activation loop, consistent 9 

with its rapid and transient activation in response to flg22 (Figure 2E, Dataset EV2 and 10 

Figure EV4A) [ , 23, 41]. It is interesting to note here that we also observed a stable 11 

increase in phosphorylation for only the Y222

42

 residue of MPK6 (Figure 2D and Figure EV4A ). 12 

We measured similar changes in phosphorylation for MPK3 as well (Figure EV4B). Recent 13 

work on animal ERK2 shows that MAPKs get sequentially phosphorylated by the upstream 14 

MAPK kinase, first on Tyrosine and then followed by phosphorylation on Threonine [ ]. 15 

Only doubly phosphorylated ERK2 is activated while monophosphorylated ERK2 is inactive 16 

[42]. Our data on MPK3 and MPK6 phosphorylation are consistent with this as we find very 17 

little evidence for monophosphorylation on Threonine only (Figure EV4) and suggests that 18 

MPK3 and MPK6 are also sequentially phosphorylated on Tyrosine, followed by 19 

phosphorylation on Threonine. Another phosphopeptide, corresponding to MAP4K5 also 20 

showed a rapid increase and sustained differential phosphorylation on S653

 33 

 residue (Figure 21 

2F). To ensure that the observed changes in phosphorylation are due to flg22 treatment, the 22 

relative abundance of several other phosphopeptides corresponding to additional MAPK 23 

members was also monitored. As shown in Figure 2 (G-I), selected phosphopeptides 24 

corresponding to MPK17, MAP4K5 and MKK1 showed no statistically significant changes in 25 

phosphorylation. Overall the data shows that our SRM assays can detect flg22-induced 26 

changes in the relative abundance of selected phosphopeptides with great sensitivity and 27 

reproducibility. This allowed the quantification of relatively small changes in phosphorylation 28 

in MKKK7 phosphopeptides, while at the same time demonstrating that other 29 

phosphopeptides remain constant over the course of the flg22 treatment. Furthermore, our 30 

data suggests a specific and complex phosphorylation pattern of MKKK7 in response to 31 

flg22 perception, consistent with a role in signal transduction. 32 

MKKK7 attenuates flg22-induced MAPK activation 34 

The interaction between MKKK7 and FLS2 and the flg22-triggered differential 35 

phosphorylation suggest that MKKK7 may be involved in the modulation of flg22 signaling at 36 

the level of FLS2 or immediately downstream of FLS2. To test the activation of downstream 37 
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MAPKs in a mkkk7 loss-of function mutant, we identified a T-DNA insertion mutant allele of 1 

MKKK7 (Salk_133360) (Appendix Figure S1A and B) and confirmed the insertion by PCR 2 

with gene-specific primers (Appendix Figure S1C upper panel). MKKK7 transcript level in 3 

mkkk7 was shown by quantitative RT-PCR (qRT-PCR) to be reduced to background levels 4 

(Appendix Figure S1C, lower panel), confirming mkkk7 as a knock-out mutant. 5 

When mkkk7 seedlings were incubated for up to 30 min with 1µM flg22, we observed 6 

induction of MAPK phosphorylation for MPK3, MPK4/11 and MPK6 with similar kinetics as in 7 

Col-0 (Figure 3A upper panel). As shown, MPK4/11 and MPK3 were transiently 8 

phosphorylated in Col-0 and mkkk7 after treatment with flg22 (Figure 3A, upper panel). 9 

There were minor differences observed in MPK4/11 and MPK3 phosphorylation in mkkk7 in 10 

the observed time frame, with slightly higher phosphorylation in mkkk7 at 10 min after 11 

induction with flg22. Interestingly, MPK6 showed enhanced phosphorylation in mkkk7 at 12 

both 10 and 30 min after induction with flg22. We observed this enhanced MPK6 13 

phosphorylation in three independent biological replicates. We verified equal loading of the 14 

proteins using an α-Actin antibody (Figure 3A, lower panel). To confirm that the differences 15 

in MPK6 phosphoprotein levels were related to changes in the phosphorylation status of 16 

MPK6 and not to an increase in MPK6 protein amount, a duplicate immuno-blot was run with 17 

identical samples from flg22-treated Col-0 and mkkk7 seedlings. The specific α-MPK6 18 

antibody showed that the MPK6 protein levels were unaltered after flg22 induction (Appendix 19 

Figure S2B upper panel), while probing the blot with α-Actin antibody confirmed equal 20 

loading (Appendix Figure S2B lower panel). Together, these data show that the enhanced 21 

phosphorylation of MPK6 detected in flg22-treated mkkk7 seedlings is due to differences in 22 

phosphorylation, while MPK6 protein levels remain constant. 23 

The results of the immunoblot were encouraging, but due to the small differences not 24 

conclusive. We therefore used the SRM assays we had set up to verify the enhanced 25 

phosphorylation status of MPK6 in mkkk7 seedlings. We used the same SRM assays to 26 

detect phosphopeptides as before but directly compared light (14N) endogenous 27 

phosphopeptides from mkkk7 seedling samples to the heavy (15N) phosphopeptides from 28 

the metabolically labeled Col-0 seedlings. Consistent with the Western blot results, the 29 

doubly phosphorylated peptide (VTSESDFMT[+80.0]EY[+80.0]VVTR) corresponding to the 30 

activation loop of MPK6 was detected at about 1.5 fold higher level in mkkk7 as compared to 31 

Col-0 at 10 min post-induction with 1 µM flg22 (Figure 3B). Other versions of MPK6 32 

phosphopeptides (pT220 or pY222) as well as phosphopeptides for MPK3 (pT196, pY198 and 33 

pT196/pY198) could not be measured in phospho-enriched samples from Col-0 or mkkk7 34 

seedlings, despite the fact that we could detect several of these phosphopeptides in cell 35 

culture samples (Figure EV4). Several other phosphopeptides, including those from other 36 

MAPK cascade proteins involved in defense signaling, such as MPK4 and MAP4K5, did not 37 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



 

This article is protected by copyright. All rights reserved 

show significant differences in flg22-induced phosphorylation between Col-0 and mkkk7 1 

(Figure 3B and Dataset EV2). Additionally, three phosphopeptides corresponding to MKKK7 2 

could be measured in Col-0. However these were not detectable above background in 3 

mkkk7, suggesting a significant reduction in MKKK7 (phospho)-protein consistent with 4 

reduced MKKK7 mRNA levels in this T-DNA insertion mutant (Figure 3B). Our results show 5 

that in mkkk7, the flg22-induced level of phosphorylation and activation of MPK6 is 6 

specifically enhanced, indicating that MKKK7 attenuates MPK6 activation in FLS2-7 

dependent signaling. 8 

 9 

MKKK7 represses defense gene expression 10 

To verify whether changes in MPK6 phosphorylation in mkkk7 also lead to changes in 11 

defense gene expression, we compared flg22-induced early defense gene expression in 12 

mkkk7 to Col-0. We used transient expression of promoter:Luciferase (LUC) constructs in 13 

mesophyll protoplasts to test flg22-induced WKRY29 and FRK1 expression [18]. Treatment 14 

of Col-0 and mkkk7 protoplasts with flg22 activated WRKY29 and FRK1 expression, but to a 15 

substantially higher level in mkkk7 compared to Col-0 (Figure 4A), in particular for FRK1. 16 

The observations in mesophyll protoplasts were confirmed by qRT-PCR analysis of 17 

WRKY29 and FRK1 mRNA levels in leaf strips of Col-0 and mkkk7 plants (Figure 4B and C). 18 

We observed enhanced basal and flg22-induced WRKY29 and FRK1 gene expression in 19 

mkkk7 relative to Col-0 (Figure 4B and C), indicating sustained defense gene activation in 20 

mkkk7 leaf strips. This suggests that loss of MKKK7 protein enhances early defense gene 21 

expression, consistent with enhanced MPK6 activation. 22 

 23 

Phosphorylation of MKKK7 is required to attenuate flg22-induced defense gene 24 

expression 25 

We demonstrated enhanced MAPK activity and defense gene expression in the mkkk7 26 

mutant background. To complement these results we used a gain-of-function approach and 27 

we transiently overexpressed MKKK7 by co-transfection in protoplasts to test flg22-induced 28 

defense gene expression. Co-transfecting p35S:MKKK7 attenuates flg22-induced WRKY29 29 

expression as compared to the flg22-induced WRKY29 expression in protoplasts 30 

transformed with our negative control (p35S:GFP) (Figure 5A). We obtained similar results 31 

when we analyzed FRK1 expression in this system (Figure EV5). These results are 32 

consistent with our loss-of-function mkkk7 data and suggest that higher levels of MKKK7 can 33 

suppress flg22-triggered defense gene activation. 34 

Since MKKK7 is a phospho-protein and shows changes in phosphorylation in response to 35 

flg22, we tested whether phosphorylation is required for its function as a negative regulator 36 

of flg22-induced gene expression. We initially identified two Serine residues (S452 and S854) 37 
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as potential PAMP-induced phospho-sites in our shotgun data set. We were able to verify 1 

differential phosphorylation by SRM for S452 but not for S854. While we also targeted S854 for 2 

phospho-SRM analysis, and were able to measure the synthetic phosphopeptide, we were 3 

unable to confidently detect the endogenous version of the corresponding phosphopeptide 4 

above background. Since the shotgun data implicated both S452 and S854 and the similarity of 5 

the residues surrounding S452 (pSSVS) and S854 (pSSVA) suggests that they may be 6 

targeted by the same kinase, we decided to mutate both residues. Using site-directed 7 

mutagenesis we changed both Serine residues into Alanine (A) or Aspartate (D), to create 8 

non-phosphorylatable (MKKK7AA) and phosphomimetic (MKKK7DD) versions (Figure 5B). 9 

Co-transfection of p35S:MKKK7AA did not attenuate flg22-induced WRKY29 gene 10 

expression (Figure 5A) or flg22-induced FRK1 gene expression (Figure EV5), showing a 11 

response equal to the negative control transformed protoplasts. When p35S:MKKK7DD was 12 

co-transfected, a nearly complete loss of flg22-responsive WRKY29 (Figure 5A) and FRK1 13 

(Figure EV5) gene expression was observed. Thus, co-transfection of MKKK7 or MKKK7DD, 14 

but not MKKK7AA

 18 

, results in suppression the flg22-induced early defense gene expression. 15 

These data show that phosphorylation of MKKK7 on one or both Serine residues may be 16 

required for attenuation of flg22-induced defense gene expression. 17 

MKKK7 represses basal immune response 19 

To test whether MKKK7 regulates the basal immune responses in Arabidopsis, we first 20 

evaluated Pseudomonas syringae pv. tomato DC3000 (Pst) induced disease symptom 21 

development in mkkk7 compared with Col-0 (Figure 6A).We dipped plants into a suspension 22 

of virulent Pst and scored disease symptoms, including water soaked lesions and chlorosis 23 

on leaves 3 days after inoculation (dpi). In three independent experiments the percentage of 24 

leaves showing disease symptoms was significantly less in mkkk7 compared to Col-0 25 

(Figure 6A), suggesting that mkkk7 is less susceptible to this virulent pathogen than Col-0. 26 

To distinguish between delayed disease symptom development in mkkk7 and actual 27 

enhanced resistance to virulent Pst we quantified bacterial growth in the loss-of-function 28 

mutant mkkk7 in four independent experiments. At 3 dpi, the bacterial titer in leaves of 29 

mkkk7 was significantly lower compared to Col-0 (Figure 6B). We also quantified the 30 

bacterial growth in a complemented transgenic line carrying p35S:MKKK7-GFP in the mkkk7 31 

background in two of the independent experiments mentioned above. Expression of 32 

p35S:MKKK7-GFP in the mkkk7 background did not cause any noticeable phenotype prior 33 

to infection (Appendix Figure S3A and S3B). No significant effect of constitutive 34 

overexpression of MKKK7 in mkkk7 on growth of Pst could be observed (Figure 6B). 35 

However, overexpressing MKKK7 in the mkkk7 background enhanced disease symptom 36 

development at an earlier stage (Figure EV 6A). These results support of the idea that the 37 
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decrease in disease symptoms seen in infected mkkk7 is caused by a more effective 1 

restriction of bacterial growth compared to Col-0 and that MKKK7 acts a suppressor of basal 2 

immunity. 3 

 4 

Phosphorylation of MKKK7 is necessary for suppression of basal immunity 5 

Overexpression of MKKK7 and MKKK7DD in protoplasts resulted in substantial attenuation of 6 

flg22-triggered defense gene expression (Figure 5A and Figure EV5). To test the importance 7 

of phosphorylation of MKKK7 in suppression of basal immunity, we made transgenic lines 8 

expressing MKKK7AA and MKKK7DD

43

. Since we noticed that constitutive overexpression of 9 

MKKK7 in Col-0 background resulted in a spectrum of phenotypes under normal growth 10 

conditions (Appendix Figure S3A), we used an estradiol inducible promoter [ ] to drive 11 

expression of MKKK7AA and MKKK7DD (ind-MKKK7AA, ind-MKKK7DD

Two independent ind-MKKK7

). 12 

AA and ind-MKKK7DD transgenic lines were dip-inoculated with 13 

virulent Pst, 24 hours after spraying with an estradiol solution. In Col-0 plants the percentage 14 

of leaves with disease symptoms was 51% at 3 dpi (Figure 6C). In ind-MKKK7AA disease 15 

symptom development was comparable to Col-0. Overexpression of the phospho-mimic 16 

version of MKKK7 (ind-MKKK7DD) resulted in a significant increase in disease symptoms 17 

(Figure 6C). To show that the ind-MKKK7DD lines are indeed more susceptible to Pst 18 

infection, we also infiltrated leaves with a low titer of Pst. At 2 days post inoculation the level 19 

of bacteria was higher in both transgenic lines as compared to the Col-0 control (Figure 20 

EV6B). These observations support the requirement of phosphorylation of MKKK7 on one or 21 

both S residues (S452 and S854

 23 

) to suppress basal immunity. 22 

MKKK7 attenuates FLS2-mediated ROS burst 24 

MKKK7 mediated attenuation of MPK6 activation and defense gene expression may be 25 

sufficient to cause the change in basal immune response. However, recently it was 26 

demonstrated that ROS contributes to resistance to Pst infection [19, 20] and that ROS burst 27 

and MAPK activation are two independent early signaling events [44]. ROS production by 28 

RBOHD in response to flg22 was recently shown to require phosphorylation by BIK1 [19]. 29 

Both RBOHD and BIK1 interact with FLS2, which suggest that flg22 perception by FLS2 is 30 

directly coupled to RBOHD mediated ROS burst through BIK1 action. Since MKKK7 also 31 

interacts with FLS2, the observed changes in basal immunity could be partly due to altered 32 

ROS production in lines with changed expression levels of MKKK7. Flg22-triggered ROS 33 

burst in mkkk7, shows no significant increase as compared to Col-0 (Figure 7A). In support 34 

of our model, overexpression of MKKK7AA enhanced ROS burst in one of the lines (Figure 35 

7B), possibly indicating a dominant negative effect, while ovexpression of MKKK7DD 36 

suppressed ROS production (Figure 7C).  37 
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Taken together our results demonstrate that MKKK7-mediated attenuation of FLS2 signaling 1 

modulates ROS production, MPK6 activation and downstream defense gene expression and 2 

ultimately basal immunity. Since both ROS burst and MAPK activation are affected by 3 

changes in MKKK7 protein level and phosphorylation, our results are consistent with a 4 

hypothesis in which MKKK7 affects attenuation of FLS2 complex output. 5 

 6 

Discussion 7 

 8 

Understanding the regulation of PRR signaling and downstream PTI has seen tremendous 9 

progress over the last few years [6]. While many of the components recently identified play a 10 

positive role in PRR signaling, several negative regulators have also been uncovered. Here 11 

we describe a novel negative regulator of FLS2-mediated signaling and show its role in 12 

attenuation of early defense responses and immunity. MKKK7 was identified in two 13 

proteomics based screens for FLS2 signaling components, one for FLS2 interacting proteins 14 

(described here) and the other for flg22-induced phosphorylation of PM associated proteins 15 

[23]. Significant numbers of differentially phosphorylated proteins were identified in response 16 

to PAMP perception [23, 24, 41] including proteins important for PTI signaling such as BIK1 17 

and RBOHD [23]. However, relatively few of these phosphorylation sites have been 18 

described as functionally relevant. The most notable exception is RBOHD, which is 19 

phosphorylated on specific residues by BIK1, including one Serine residue that is required 20 

for its subsequent activation by other kinases [19]. While functional analysis is labor 21 

intensive, it is also hampered by the inability to reproducibly measure and quantify the same 22 

phosphorylated peptide in replicate experiments by shotgun proteomics approaches and the 23 

general lack of phosphopeptide specific antibodies. To address this problem we have 24 

developed a quantitative MS-based approach in which we combined SRM with 15N 25 

metabolic labeling to determine changes in phosphorylation on specific residues of MKKK7 26 

after flg22 treatment. This approach relies on a priori knowledge of the targeted 27 

phosphopeptide, during LC separation and fragmentation in the mass spectrometer, and 28 

requires generation of a mass spectrometric assay for each targeted (phospho-) peptide. We 29 

have made use of synthetic phospho-peptides to set up the SRM assays for each peptide, 30 

allowing us to positively identify the correct set of transitions (pairs of precursor and 31 

fragment ions) and accurately determine the retention time of each peptide. Both these 32 

parameters are essential to accurately select and quantify the correct peaks. These assays 33 

can then be applied reproducibly to quantify the abundance of the targeted phospho-peptide. 34 

This allowed us to confidently identify residues with a potential role in the regulation of 35 

MKKK7 function, in addition to quantify changes in other phosphoproteins in response to 36 

flg22 at the same time. We verified the importance of phosphorylation of MKKK7 on S452 and 37 
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S854 by changing to either non-phosphorylatable Alanine or phospho-mimetic Aspartate 1 

residues, followed by measuring changes in several different defense-related outputs. SRM 2 

in combination with metabolic labeling also allowed us to accurately quantify changes in 3 

phosphorylation of key MAP kinase cascade proteins in 14N labeled mkkk7 seedlings 4 

compared to 15

There are more than 60 MAPKKK members in Arabidopsis [

N labeled Col-0 seedlings. This enabled us to unequivocally show important 5 

changes in phosphorylation of this key defense signaling proteins in mkkk7, while the level 6 

of flg22-induced phosphorylation of most other monitored proteins did not change as 7 

compared to the Col-0 control. 8 

32] but to date, only one plant 9 

MAPKKK involved in defense responses has been described as a protein regulated by 10 

phosphorylation. SlMAPKKKα abundance and activity are stabilized by phosphorylation on a 11 

C-terminal serine residue and binding of the pS residue by a 14-3-3 protein [45]. We show 12 

here that Arabidopsis MKKK7 is differentially phosphorylated in response to flg22 and that 13 

one or two of the identified pS residues (pS452 and pS854

18

) are important for its function as a 14 

negative regulator of FLS2 signaling. The combined biochemical results and phospho-SRM 15 

data are supported by our transient expression experiments in mesophyll protoplasts. The 16 

transient expression system in mesophyll protoplasts is an excellent model system in which 17 

flg22 perception leads to the activation of Arabidopsis MPK3 and MPK6 upstream of 18 

WRKY29 and FRK1 expression [ ]. Flg22-induced MPK3 and MPK6 activation is essential 19 

for normal induction of expression of these genes, as overexpression of phosphothreonine 20 

lyase effector proteins HopAI1 or SpVC in mesophyll protoplasts completely blocks flg22-21 

induced MAPK activation and downstream defense gene expression (Mithoe and Menke, 22 

unpublished data) [46]. The marker genes WRKY29 and FRK1 can thus be used as a proxy 23 

for MAP kinase activation in Arabidopsis. We observed that flg22-induced defense gene 24 

expression was effectively repressed when MKKK7 or MKKK7DD were co-transfected into 25 

protoplasts (Figure 5A and Figure EV5). Co-transfection of MKKK7AA 

The role of MKKK7 as a negative regulator of FLS2 signaling and flg22-triggered MPK6 30 

activation is also supported by available evidence for the positive role of MPK6 in basal 31 

immunity or PTI [

did not block 26 

responsiveness to flg22. These results point towards a direct connection between the 27 

phosphorylation status of MKKK7 and its role as a suppressor of FLS2-dependent MAPK 28 

activation. 29 

18, 47-49]. MPK6-silenced lines displayed an enhanced susceptibility 32 

against avirulent and virulent strains of P. syringae [49] and a MEKK1-MKK4/MKK5-33 

MPK3/MPK6 cascade was shown to be required for PTI against virulent bacterial and fungal 34 

pathogens [18]. Also, Arabidopsis MAP kinase phosphatase1 (MKP1), which targets and 35 

dephosphorylates MPK6, is observed as a negative regulator of PAMP responses and 36 

bacterial resistance [47, 48]. Similarly, mkkk7 displayed an increase in resistance against 37 
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virulent Pst, while overexpression of MKKK7DD, but not MKKK7AA

50

, resulted in enhanced 1 

susceptibility to virulent Pst. When all data is taken into consideration, it is likely that MKKK7 2 

directly attenuates the MPK3/MPK6 cascade through interaction with FLS2, affecting flg22-3 

induced defense signaling and PTI. As such, reduction of active MKKK7 protein in mkkk7 4 

could lead to a state of priming, in which the cells respond faster to PAMP perception. 5 

Priming of stress response has been shown to require MPK3 and MPK6 in Arabidopsis [ ] 6 

and mkkk7 with slightly altered levels of MPK6 activity may actually indicate a primed state. 7 

Similar priming phenotypes were recently also reported for pp2a subunit mutants, which did 8 

not display constitutive defense responses, but responded stronger to PAMPs [21] . 9 

The recent identification of several negative regulators of PTI signaling is compelling 10 

evidence for the strict regulation of signaling cascades prior to PAMP perception and 11 

immediately after the signal has been transduced. This ensures a timely and dosed 12 

response and allows coordinated control of growth and defense responses. Negative 13 

regulation of PTI signaling occurs at different levels with some proteins affecting complex 14 

formation, such as the pseudokinase BIR2, which binds BAK1 to inhibit complex formation 15 

with FLS2 prior to ligand perception [22]. Others, such as the RAF-like kinase EDR1, interact 16 

with downstream MEK4 and MEK5 and negatively regulate MEK protein levels through an 17 

unidentified process [51]. MKKK7 likely acts at the level of the FLS2 receptor complex, as it 18 

co-immunoprecipitates with FLS2 and negatively regulates flg22-induced MAPK activation 19 

and downstream WRKY29 and FRK1 expression. 20 

Interaction of MKKK7 with FLS2 suggests several possible modes of action for attenuation 21 

of FLS2 output. It may well be that MKKK7 is competing for FLS2 binding with a positively 22 

acting MKKK, such as MEKK1, which in response to flg22 perception activates MPK6 23 

through phosphorylation of MEK4 and MEK5 [18]. However, direct binding of other MKKKs 24 

to FLS2 has not been reported and several MAPKKKs may be regulating flg22 signaling in 25 

Arabidopsis upstream of the MKK4/MKK5-MPK3/MPK6 cascade (Asai et al.,2002; Suarez-26 

Rodriguez et al.,2007). We also show that in addition to the MAPK branch of PTI signaling, 27 

MKKK7 negatively regulates ROS production, which is independent of MAPK activation [44]. 28 

It is therefore not likely that competition for FLS2 binding with another MKKKs is the only 29 

mode of negative regulation. MKKK7 but may act to stabilize protein-protein interaction 30 

between FLS2 and another negative regulator, or could affect protein phosphorylation at the 31 

level of FLS2 complex or immediate downstream receptor like cytosolic kinases (RLCK) 32 

such as BIK1 or one of three related PBLs involved in ROS burst. Since BIK1 and PBL1 are 33 

not required for flg22-induced MAPK activation [52], addressing this question requires 34 

further in depth analysis of FLS2 complex formation and flg22-induced protein 35 

phosphorylation in mkkk7 mutants. 36 

 37 
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Methods 1 

 2 

Plant material  3 

All mutant and transgenic lines used in this study were in the background of Arabidopsis 4 

thaliana accession Columbia (Col-0). The loss-of function T-DNA insertion line mkkk7 5 

(SALK_133360) was generated by SIGnAL and obtained from the European Arabidopsis 6 

Stock Centre (NASC) in Nottingham, UK. Plants were grown on soil or on Murashine and 7 

Skoog (MS) salt medium (Duchefa) with 1% sucrose and 1% agar. The mutant line mkkk7 8 

was backcrossed to Col-0 wild-type and genotyped using gene specific primers. All lines 9 

were grown under normal long-day growth conditions at 20-22°C and after 4 weeks leaf 10 

material was harvested and gDNA was isolated. The position of the insertion was confirmed 11 

by genotyping using PCR with gene-specific primers for MKKK7 5’-12 

GCAGGATTTTTGTTGTTGTCC-3’ and 5’-AATCATTTCTTGGGGTGGATC-3’ and 5’- 13 

TGGTTCACGTAGTGGGCCATCG-3’ for the left border of the T-DNA. 14 

 15 

RNA extraction and qRT-PCR analyses 16 

Material for RNA analysis was frozen in liquid nitrogen and stored at -80°C.  For defense 17 

gene analysis duplicate sets of tissue was induced at set time points 0, 1, 2, 3, 4 h after 18 

induction with 10 µM of flg22. Tissue was ground in liquid nitrogen followed by extractions 19 

using TRIzol reagent (Invitrogen, Carlsbad, CA). Total RNA extractions for RT-PCR and 20 

qRT-PCR were performed as described in Menke et al. (2004). cDNA was synthesized from 21 

1µg of total RNA using SuperScript II reverse transcriptase (Invitrogen). All RT-PCR 22 

reactions were performed under the following conditions: 94°C for 3 min, 26 cycles (94°C for 23 

30 sec, 60°C for 30 sec, 72°C for 1 min), and a final extension at 72°C for 5 min. qRT-PCR 24 

was performed using the SYBR Green protocol (Applied 25 

Biosystems http://www.appliedbiosystems.com). Primers used are listed in Appendix Table 26 

S1. Each marker gene was normalized to the internal reference gene At2g29550 (TUB7) 27 

and plotted relative to the Col-0 mock expression level.  28 

 29 

SDS-PAGE and MAP kinase assay 30 

Leaf material of 4 week old seedlings was cut into 0.5 cm thin strips and floated in 1 ml of 31 

water in a single well of a 24 well plate to recover from wounding stress. After 20-24 h, time-32 

course inductions were done with the synthetic peptide flg22 (Sigma Genosys) at t=0, 5, 10, 33 

30 and 60 min. The material was frozen in liquid nitrogen and stored in -80°C. Protein 34 

extractions and SDS-PAGE were performed as described in [49]. Equal loading was 35 

confirmed by Ponceau S staining and membranes were rinsed in TBS with Tween20 36 

(TBST), blocked for 1 h in TBST with 5% nonfat milk powder and incubated overnight at 4°C 37 
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with polyclonal primary rabbit antibodies raised against MPK3 (a-C-3, 7.5 µg/mL) or MPK6 1 

(a-N-6, 5 µg/mL) [49] diluted in TBST solution with 3% BSA (Sigma). Membranes were 2 

rinsed 4 times in TBST before incubation with the secondary HRP-conjugated anti-rabbit 3 

antibody (1:2000, Cell Signaling). As a loading control, membranes were incubated with α-4 

Actin Mouse IgG, clone C4 antibody (1:1000, ICN), followed by incubation with the 5 

secondary antibody anti-mouse-HRP conjugated (1:5000, Novagen). MAP kinase activity 6 

was detected using anti-phospho-p44p44/42 MAPK (T202/Y204) primary antibody (1:750, 7 

Cell Signaling Technology) in TBST with 3% BSA at 4°C for 16-20 h. Blots were washed as 8 

described above after which incubation was continued with a 2 h incubation with anti-rabbit-9 

HRP conjugated secondary antibody (1:2500, Cell Signaling Technology). Antigen-antibody 10 

complexes were visualized using chemiluminescence detection with ECL Western Blotting 11 

Detection Kit (GE Healthcare) according to the manufacturer’s instructions before exposure 12 

to film (Kodak). 13 

 14 

Mesophyll Protoplast Assay 15 

To study transient gene expression, Arabidopsis plants were grown in short-day growth 16 

conditions. Mesophyll protoplast isolation and transfections of plasmid DNA was conducted 17 

as described [53]. To study early transcription responses, three plasmids expressing a 18 

regulatory effector, a specific reporter and a transfection control reporter were transfected at 19 

the ratio of 4:3:1.Ten µM of 

18

the synthetic peptide flg22 was added after 16h incubation of 20 

protoplasts at 22°C.We used the promoters of transcription factor WRKY29 and receptor-like 21 

kinase FRK1 fused to the firefly luciferase reporter (fLUC) reporter [ ] and transiently 22 

expressed these constructs in mesophyll protoplasts from Col-0 or mkkk7 plants. The 23 

relative fLUC reporter activity of the defense responsive genes was measured against the 24 

rLUC activity using the Dual Luciferase reporter assay system kit (Promega, Madison, USA) 25 

according to the manufacturer’s instructions. The LUC activity was measured using the TD-26 

20/20 Glomax luminometer (Promega). All fLUC activity was normalized to the non-treated 27 

wild type. Constructs used to test PTI in protoplasts are listed in Appendix Table S2 and S3. 28 

 29 

Generation of transgenic plants 30 

Different promoters were used to study the expression of the MKKK7 gene (Appendix Table 31 

S3). The MultiSite Gateway manufacturer’s protocol was used to design primers to clone 32 

different promoters in BOX1 entry clone. The 35S promoter, pG1090:XVE and pMKKK7 33 

were cloned in BOX1. pG1090:XVE is an estrogen receptor-based chemical inducible 34 

system [43] to generate transgenic plants. The second entry clone BOX2 consisted either of 35 

the gDNA or the cDNA sequence of MKKK7. Selected Serine residues in MKKK7 were 36 

mutated according to the manufacturer’s instructions for the Stratagene quick change 37 
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mutagenesis kit. S452 and S854 

 12 

were both changed to A (a non-phosphorylatable version) and 1 

to D (a phospho-mimic version). BOX3 of the gateway system either had the marker GFP or 2 

NOS terminator. The integrity and sequence of all entry clones was confirmed by 3 

sequencing. The correct entry clones were combined to one construct (LR reaction). These 4 

final constructs were confirmed by restriction digestion. Primers used for PCR amplification 5 

for the MultiSite Gateway cloning and for the quick change mutagenesis are listed in 6 

Appendix Table S1. Transgenic plants were generated using Agrobacterium tumefaciens 7 

strain C58. All constructs were transformed into Arabidopsis mutant mkkk7 and Col-0 using 8 

the floral dipping method. Transformants were selected on ½ MS agar medium containing 9 

40 µg/ml Norf, 35S:MKKK7-GFP and amino acid substituted derivative overexpressor 10 

constructs were used in the mesophyll protoplast system to study gene transcription 11 

Protein extraction and co-immunoprecipitation assays 13 

Arabidopsis seedlings expressing FLS2-GFP or the plasma membrane addressed GFP 14 

(Lit6b-GFP) were grown axenically for 2 weeks in liquid ½ MS supplemented with 1% 15 

sucrose under short day conditions. Elicitation with 10µM flg22 was performed in ½ MS (1% 16 

sucrose) for 20 minutes prior storage at -80°C. Ten grams of fresh material per condition 17 

were ground in liquid nitrogen using a mortar and pestle. Protein extraction buffer (50 mM 18 

MES, pH 6.5, 150 mM NaCl, 10 % glycerol, 5 mM DTT, 0.5 % [w/v] polyvinylpyrrolidone, 1% 19 

[v/v] P9599 Protease Inhibitor Cocktail (Sigma-Aldrich), 2% [v/v] for each phosphatases 20 

inhibitor cocktail 2 and 3 (Sigma-Aldrich), 100 μM phenylmethylsulphonyl fluoride and 1 % 21 

[v/v] IGEPAL CA-630 (Sigma-Aldrich)) was added at 4 mL per gram of tissue powder. 22 

Samples were incubated at 4 °C for 30 min and clarified by a 20-min centrifugation at 13,000 23 

rpm at 4 °C. Supernatants were incubated for 2 h at 4 °C with 250 μL of anti-GFP magnetic 24 

beads (Miltenyi Biotec). Following incubation, magnetic beads were retained using a 25 

magnetic stand (Miltenyi Biotec) and washed twice with 250 µL of modified extraction buffer 26 

(50 mM MES, pH 6.5, 150 mM NaCl, 10 % glycerol, 0.5% [v/v] IGEPAL CA-630) before 27 

eluting proteins by adding 60 µL of boiling hot SDS buffer. Co-immunopurification of FLS2 28 

and YFP-MKKK7 were performed as described previously by Schwessinger et al., [8] 29 

starting from one gram of fresh tissues per condition. 30 

 31 

IP-MS Proteomics 32 

Proteins were separated by SDS-PAGE on 10% acrylamide/bis-acrylamide gels. After 33 

staining with SimplyBlue™ stain (Invitrogen), proteins were digested by trypsin as described 34 

previously [54]. LC-MS/MS analysis was performed using a LTQ-Orbitrap mass 35 

spectrometer (Thermo Scientific) and a nanoflow-HPLC system (nanoAcquity; Waters) as 36 

described previously [54]. The entire TAIR10 database was searched using Mascot (v 2.3, 37 
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Matrix Science) search engine with the inclusion of common contaminants sequences such 1 

as keratins and trypsin. Precursor and fragment mass tolerances were set for 10 ppm and 2 

0.8 Da respectively. Allowed static modification was carbamidomethylation of Cys residues 3 

and allowed variable modification was oxidation of Met. Trypsin was used to generate 4 

peptides and two missed tryptic cleavages were allowed in the search. Scaffold (v 4.0; 5 

Proteome Software), implementation of Peptide Prophet algorithm, was used to validate 6 

peptide and protein hits identification with acceptance thresholds set to 95% and 99% 7 

respectively and requirement of at least two unique peptide hits per protein Co-8 

immunopurifications and MS/MS analyses of un-elicited, flg22-elicited and Lti6b-GFP control 9 

were performed in three independent replicates. The mass spectrometry proteomics data 10 

have been deposited to the ProteomeXchange Consortium [55] via the PRIDE partner 11 

repository with the dataset identifier PXD003189 and 10.6019/PXD003189 12 

  13 

ROS assay 14 

Twenty-four leaf disks of 4-5 weeks old plants were collected using a 8 mm cork borer and 15 

floated overnight in sterile water containing 2 μM estradiol. The next day the solution was 16 

replaced with 17mg/ml luminol, 10mg/ml horseradish peroxidase and 100 nM flg22 and 17 

luminescence was recorded with a CCD camera (Photek) as previously described [56]. 18 

 19 

Sample preparation for Phospho-SRM mass spectrometry 20 

Metabolic labeling of cell cultures and seedlings was described previously and resulted in 21 

nearly complete (>99%) labeling [23, 57]. Cultured cells were treated and proteins extracted 22 

as described in [16]. Seedlings were grown in liquid culture for 9-10 days starting from 1000 23 

seeds per 50 ml of ½ MS culture medium. 15N labeled Col-0 seedlings were grown in 15N ½ 24 

MS medium and started from 15

58

N labeled seeds obtained from hydroponically grown plants. 25 

Sample preparation started from 3 mg of total protein extract (determined using the Bradford 26 

assay) dissolved in ammonium bicarbonate buffer containing 8 M urea. First, the protein 27 

extracts were reduced with 5 mM Tris (2-carboxyethyl) phosphine (TCEP) for 30 min at 30°C 28 

with gentle shaking, followed by alkylation of cysteine residues with 40mM iodoacetamide at 29 

room temperature for 1 hour. Subsequently the samples were diluted to a final concentration 30 

of 1.6 M urea with 50mM ammonium bicarbonate and digested over night with trypsin 31 

(Promega; 1:100 enzyme to substrate ratio). Peptide digests were purified using C18 32 

SepPak columns as described before [ ]. Phosphopeptides were enriched using titanium 33 

dioxide (TiO2 59, GL Sience) with Phthalic acid as a modifier as describe before [ ]. 34 

Phosphopeptides were eluted by a pH-shift to 10.5 and immediately purified using C18 35 

microspin columns (The Nest Group Inc., 5 – 60 µg loading capacity). After purification all 36 
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samples were dried in a speedvac, stored at -80°C and re-suspended in 0.1% formic acid 1 

(FA) just before the mass spectrometric measurement. 2 

 3 

SRM mass spectrometry 4 

SRM measurements were performed as described by Ludwig et al., (2012) with minor 5 

changes. Briefly, analysis was carried out on a TSQ Vantage triple quadrupole mass 6 

spectrometer (Thermo Fischer Scientific) equipped with a nano-electrospray ion source, 7 

coupled to a nano-LC system (Eksigent). Aliquots of phospho-enriched samples were 8 

loaded onto a 75 μm x 10 cm fused silica microcapillary reverse phase column, in-house 9 

packed with Magic C18 AQ material (200Å pore, 5 μm diameter, Michrom BioResources). 10 

For peptide separation a linear 30 min gradient from 2% to 35% solvent B (solvent A: 98% 11 

water, 2% acetonitrile, 0.1% formic acid; solvent B: 98% acetonitrile, 2% water, 0.1% formic 12 

acid) at 300 nL/min flow rate was applied. For each sample three biological replicates were 13 

analyzed. SRM-assays were developed and optimized using light (14

60

N) crude synthetic 14 

phosphopeptides (JPT peptide technologies, Germany). Synthetic phosphopeptide mixes 15 

were analyzed first by SRM-triggered MS2 on a triple quadrupole mass spectrometer. The 16 

hereby-generated full MS2 spectra were used to identify the 6 most intense transitions per 17 

peptide and to determine the peptide retention time relative to a set of retention time 18 

reference peptides (iRTs) [ ]. For synthetic phosphopeptides that did not trigger an MS2 19 

spectrum the 6 most intense transitions were selected from SRM measurements of the 20 

complete y- and b-ion series of the doubly and triply charged precursor ions. 21 

 22 

SRM Data analysis 23 

The raw data files were imported into the Skyline software package [61]. Confident peptide 24 

identification was carried out based on co-elution of light and heavy peptide peaks, iRT 25 

information and matching relative transitions intensities between the SRM peak and the 26 

library MS2 spectrum (if available). For accurate peptide quantification low quality or 27 

interfered transitions were removed manually. The refined dataset can be accessed via 28 

(https://daily.panoramaweb.org/labkey/project/Aebersold/ludwig/Mithoe_2014_Arabidopsis_29 

phospho_SRM/begin.view). Quantification was based on the integrated peptide peak area, 30 

which was calculated by summing all transition areas associated to the light (synthetic spike 31 

or endogenous mutant) or heavy peptide (endogenous wildtype), respectively .The statistical 32 

significance analysis (student t-test) was carried out in Microsoft Excel (Dataset EV2). All 33 

SRM assay information and raw data has been deposited to the Panorama Skyline server 34 

and can be accessed via: 35 

(https://daily.panoramaweb.org/labkey/project/Aebersold/ludwig/Mithoe_2014_Arabidopsis_36 

phospho_SRM/begin.view). 37 
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 1 

Pathogen inoculation and analysis of resistance 2 

Plants were individually transplanted into soil and grown for the required amount of time in 3 

short day conditions (10 h day; 100 µE·m-2·s-1

49

; 21°C). P. syringae pv. tomato DC3000 (Pst 4 

DC3000) was grown overnight at 28°C in Kings B medium supplemented with appropriate 5 

antibiotics as described [ ]. Cells were harvested by centrifugation (10 min at 4000 rpm) 6 

and pellets were resuspended in 10 mM MgSO4 and diluted to a proper OD600. For spray 7 

and dip innoculations, 0.015% (v/v) Silwet L-77 (Van Meeuwen Chemicals, Weesp, 8 

Netherlands) was added. For Pst DC3000 infiltration assays (OD600=0.0005) leaves of 4-9 

week-old plants were pressure infiltrated using a needleless syringe. After inoculation plants 10 

were grown at short day conditions with high humidity. To quantify pathogen growth after 11 

inoculation, 2 leaf discs from 2 leaves per plant were harvested (n=5) and ground in 10 mM 12 

MgCl2. Dilutions were plated on Kings B medium with 50 mg/mL of rifampicin and incubated 13 

at 28°C for 48 h, after which the number of colonies was determined. For Pst DC3000 dip 14 

inoculation (OD600=0.025) leaves were dipped in a bacterial suspension including Silwet L-15 

77 for 2 seconds. After inoculation plants were grown at short day conditions with high 16 

humidity. Two to four days after inoculation the disease index was determined by scoring 17 

each leaf diseased or not diseased resulting in a percentage of diseased leaves per plant 18 

(n=20). Inducible transgenic lines carrying MKKK7AA and MKKK7DD 

 21 

were sprayed with 5 μM 19 

estradiol solution 24 h prior to inoculation. 20 
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 25 

Figure legends 26 

 27 

Figure 1. Flagellin receptor FLS2 co-immunoprecipitates with MKKK7. 28 

Immunoprecipitation was performed with GFP-binding protein immobilized on magnetic 29 

beads using extracts of Arabidopsis seedlings, expressing either YFP-MKKK7 or Lti6B. 30 

Seedlings were treated with 1 μM flg22 for the indicated time. YFP-MKKK7 and Lti6B-GFP 31 

were detected with an anti-GFP antibody while FLS2 was detected with an FLS-specific 32 

antibody. Upper panel shows (co)-immunoprecipated proteins, lower panel shows input 33 

levels of protein. Arrowheads indicate the position of proteins of interest.  34 
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 1 

Figure 2. Transient phosphorylation of MKKK7 and other MAP kinases upon flg22 2 

treatment. Application of selected reaction monitoring (SRM) mass spectrometry to quantify 3 

phosphorylated peptides in cell extracts treated with 1 μM flg22. Bars represent the mean 4 

ratio of endogenous phosphopeptide versus spiked-in synthetic phosphopeptide normalized 5 

to t = 0 with error bars ± SEM (n=3.). Asterisks indicate significant difference level compared 6 

to t = 0 (student t-test, *>0.05, **>0.01 and ***>0.001). The color of each bar corresponds to 7 

the different time points (0 minutes = dark blue, 5 minutes = red, 10 minutes = green, 20 8 

minutes = purple, 30 minutes = light blue). Above each graph is the protein name and the 9 

phosphorylated residue (in brackets) is indicated and below the corresponding 10 

phosphopeptide is shown with the Serine (S), Threonine (T) or Tyrosine (Y) phosphorylation 11 

site indicated by ”[+80]”.  12 

 13 

Figure 3. Flg22-induced MAPK phosphorylation is enhanced in the mkkk7 mutant. A) 14 

Immunoblot analyses showing MAPK phosphorylation after flg22 induction in Col-0 and in 15 

mkkk7. Protein extracts were made from seedlings treated with 1 μM flg22 and samples 16 

were taken at t=0, 10 and 30 min post induction. The p44/42 antibody was used to detect 17 

phosphorylated MAPKs. Position of the individual phosphorylated MAPKs is indicated at the 18 

right. Equal loading of proteins is shown with an α-Actin antibody as a loading control 19 

(bottom panel). Three biological replicates were done with identical results B) MPK6 20 

phosphorylation is specifically enhanced in mkkk7. Comparison of phosphopeptide 21 

abundances from selected MAP kinases in Col-0 (blue) and mkkk7 (red) seedlings at t = 0 22 

min and t = 10 min after 1 μM flagellin treatment by selected reaction monitoring (SRM) 23 

mass spectrometry. Phosphopeptide corresponding to MKKK7 are only detectable in Col-0 24 

seedlings and are non-detectable (ND) in mkkk7. Bars represent means of measured 25 

peptide areas (sum of all transition areas) for three biological replicates, with error bars ± 26 

SEM (n=3). Asterisks indicate significant difference between Col-0 and mkkk7 at individual 27 

time points (student t-test, *>0.05, **>0.01 and ***>0.001). ND indicates integration of an 28 

area without transitions significantly above background. Above each graph the protein name 29 

and the phosphorylated residue (in brackets) is indicated as well as the corresponding 30 

phosphopeptide sequence. Serine (S), Threonine (T) or Tyrosine (Y) phosphorylation is 31 

indicated by ”[+80]”. 32 

 33 

Figure 4. Flg22-induced defense gene expression is enhanced in mkkk7. A) Transient 34 

expression analysis in Arabidopsis mesophyll protoplasts shows enhanced defense gene 35 

expression in mkkk7 protoplasts after flg22 treatment. Protoplasts were isolated from 4 week 36 

old plants and transfected with pWKRY29:fLUC (WRKY29) or pFRK1:fLUC(FRK1) 37 
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constructs together with 35S:rLUC, as indicated in the graph. Protoplasts were treated for 4 1 

hrs with 10 µM flg22 or mock treated as indicated. The horizontal axis indicates the 2 

treatment while the vertical axis represents expression levels relative to the mock treated 3 

control sample, as fold induction. All measurements were normalized to the rLUC activity. 4 

Bars represent means ± STDEV (n=2). Experiment was repeated 6 times with similar 5 

results. B) WRKY29 transcripts measured by qRT-PCR in flg22 treated leaf material. Leaf 6 

strips of Col-0 and mkkk7 were treated with 1 µM flg22 for t=0, 1, 2, and 4h. WRKY29 7 

transcripts were normalized against Ubiquitin transcript as described before [62]. Bars 8 

represent mean value and error bars show SE (n=3). (* p<0.05, ** p<0.01, student t-test). C) 9 

FRK1 transcripts measured by qRT-PCR in flg22 treated leaf material. Leaf strips of Col-0 10 

and mkkk7 were treated with 1 µM flg22 fort=0, 1, 2, and 4h. FRK1 transcripts were 11 

normalized against Ubiquitin transcript as described before [62]. Bars represent mean value 12 

and error bars show SE (n=3). (* p<0.05, ** p<0.01, student t-test). For each qRT-PCR 13 

experiments shown in B) and C) at least 2 biological replicates were done showing the same 14 

trend. 15 

 16 

Figure 5. Phosphorylation of MKKK7 on specific Serine residues is required for 17 

negative regulation of flg22-induced WRKY29 gene expression. A) Transient co-18 

expression of MKKK7 in Arabidopsis mesophyll protoplasts shows suppression of flg22-19 

induced WRKY29 gene expression. Protoplasts were transfected with pWRKY29:fLUC, 20 

35S:rLUC and indicated overexpression constructs of MKKK7 (OE-MKKK7, OE-MKKK7AA or 21 

OE-MKKK7DD

 34 

) as indicated on the horizontal axis. Protoplasts were treated with 10 μM flg22 22 

or mock treated for 4 hrs. All measurements were normalized to the rLUC activity and 23 

expression is relative to the mock treated control sample, shown as fold induction on the 24 

vertical axis. Results shown are means ± STDEV (n=2). At least two biological replicates 25 

were done with similar results B) Protein structure of MKKK7 and mutated versions of 26 

MKKK7 with the protein kinase domain shown in yellow and an ARM/HEAT repeat domain 27 

shown in blue. The position of the phosphorylated Serine residues is indicated with triangles 28 

and bold S below the protein structure. The red triangles indicate phosphorylated Serines 29 

that were targeted for mutagenesis or the corresponding phospho-mimic Aspartic acid. Blue 30 

triangles indicate the substitution with the non-phosphorylatable amino acid Alanine. Amino 31 

acid substitute versions of MKKK7 are shown below the wild-type. S, Serine; A, Alanine; D, 32 

Aspartic acid. 33 

Figure 6. MKKK7 negatively regulates basal resistance to virulent bacterial infection. 35 

A) Four-week-old seedlings were dipped into a suspension containing virulent Pst DC3000 36 

and 72 h later the disease symptoms were scored. Data represents mean values ± SEM 37 
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(n=20;***, p<0.001; paired t-test). Three biological experiments were done showing similar 1 

results. B) Quantification of bacterial growth in Arabidopsis lines Col-0, mkkk7 and 2 

p35S:MKKK7-GFP in the mkkk7 background. Four to five-week-old plants were pressure-3 

infiltrated with virulent Pst DC3000 and at indicated time points 6 samples were harvested 4 

and bacteria re-isolated on selective media. The number of colony forming units (cfu/cm2) 5 

was determined at t=0, 2 and 3days post inoculation (dpi). Data represents mean values ± 6 

SEM (n=6; **, p<0.01; paired t-test). Experiments were done at least twice with similar 7 

results. C) Disease symptom development in Pst-infected lines with estradiol inducible 8 

constructs of ind-MKKK7AA L8, ind-MKKK7AA L10, ind-MKKK7DD L1 and ind-MKKK7DD 

 14 

L3. 9 

Two independent transgenic lines for each construct were grown under short-day conditions 10 

and disease symptoms were scored 3 dpi. Data represents mean values ± SEM (n=20; *, 11 

p<0.05; **, p<0.01; paired t-test). The vertical axis represents the percentage disease 12 

symptoms. Experiments were done at least twice with similar results. 13 

Figure 7. Overexpression of MKKK7DD reduces flg22-induced ROS burst in leaves. 15 

Analysis of reactive oxygen species (ROS) production after treatment with flg22. A) Effect of 16 

100 nM flg22 treatment on ROS burst measured in 5 week old plants of Col-0 and mkkk7. B) 17 

Effect of 100 nM flg22 treatment on the ROS burst measured in 5 week old plants of Col-0 18 

and two independent inducible MKKK7AA transgenic lines. C) Effect of 100 nM flg22 19 

treatment on the ROS burst measured in 5 weeks old plants of Col-0 and two independent 20 

inducible MKKK7DD 

 25 

transgenic lines. Graphs represent means with error bars ± SEM (n=24). 21 

The vertical axis represents the relative increase in ROS production (photon counts) after 22 

PAMP treatment. At least three biological replicate experiments were done with similar 23 

results. 24 

Expanded view figure legends 26 

 27 

Figure EV1. MS/MS spectra of peptides mapped to MKKK7. LTQ-Orbitrap MS/MS 28 

spectra of MKKK7 peptides identified in FLS2-GFP co-immunoprecipated samples. Peptide 29 

sequence and fragmentation pattern are shown above the spectra together with the 30 

observed m/z and charge state of the precursor ion. 31 

 32 

Figure EV2. MKKK7 domain structure and phosphorylated residues. A) Protein 33 

structure of MKKK7 with the protein kinase domain shown in yellow and an ARM/HEAT 34 

repeat domain shown in blue. The position of the phosphorylated Serine residues (S) is 35 

shown with triangles. The green triangles indicate non-differentially phosphorylated sites. 36 

The red triangles indicate phosphorylated Serine (pS) sites that were targeted for 37 
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mutagenesis. B) Protein sequence of MKKK7, highlighted in yellow are all (phospho-) 1 

peptides measured by mass spectrometry. Highlighted in green are modified residues and 2 

the red box around the S residues indicates phosphorylated Serine residues that were 3 

targeted for mutagenesis. 4 

 5 

Figure EV3. Multiple sequence alignment of MKKK7 and related MAP3K. Amino acid 6 

sequences for Arabidopsis thaliana MKKK6 (AtMKKK6) and MKKK7 (AtMKKK7), 7 

Arabidopsis lyrata MKKK7 (AlMKKK7), Brassica napus MAP3K epsilon protein kinase 1 8 

(BnM3KE1), Camelina sativa MAP3K epsilon protein kinase (CsM3KE), Solanum 9 

lycopersicum MAP3K epsilon protein kinase (SlM3KE), Nicotiana benthamiana MAP3K 10 

epsilon protein kinase (NbM3KE), Malus domestica MAP3K epsilon protein kinase 11 

(MdM3KE) and Populus trichocarpa MAP3K epsilon protein kinase (PtM3KE) were aligned 12 

with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Residues phosphorylated in 13 

AtMKKK7 are indicated with a red arrow and highlighted in red, conserved residues in other 14 

MAP3Ks are highlighted in green. Protein names and Genebank accession numbers are 15 

indicated on the left side of the alignments. 16 

 17 

Figure EV4. MAP kinase activation loop phosphorylation. A) Selected reaction 18 

monitoring (SRM) of MPK6 activation loop phosphorylation in response to flg22 stimulation 19 

in cultured cells. B) SRM of MPK3 activation loop phosphorylation in response to flg22 20 

stimulation in cultured cells. Mono and doubly phosphorylated versions of the tryptic MPK 21 

activation loop peptides were monitored at 0, 5, 10, 20 and 30 min after stimulation with 1 22 

µM flg22. Sequences are shown on the left, with lower case p indicating phosphorylation of 23 

the residue to the right. Left panels show integrated peak area data for three biological 24 

replicates (A, B and C). Middle panels show examples of transitions measured for 25 

endogenous 15N labeled peptides. Right panels show examples of total integrated peak area 26 

for endogenous 15N labeled peptides and 14

 29 

N labeled synthetic peptides, which were spiked 27 

into the samples at a constant amount. 28 

Figure EV5. Phosphorylation of MKKK7 on specific Serine residues is required for 30 

negative regulation of flg22-induced FRK1 gene expression. Transient co-expression of 31 

MKKK7 in Arabidopsis mesophyll protoplasts shows suppression of FRK1 gene expression 32 

in protoplasts after flg22 treatment. Protoplasts were isolated from four-week-old plants and 33 

transfected with pFRK1:fLUC, 35S:rLUC and overexpression constructs of MKKK7 (OE-34 

MKKK7, OE-MKKK7AA or OE-MKKK7DD) as indicated on the horizontal axis. Sixteen hours 35 

later, protoplasts were treated with 10 µM flg22 for 4 hrs. All measurements were normalized 36 
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to the rLUC activity and expression levels were calculated relative to the mock treated 1 

control sample as shown as fold induction represented on the vertical axis. 2 

 3 

Figure EV6. MKKK7 negatively regulates basal resistance to virulent bacterial 4 

infection. A) Example of symptom development at 2 dpi in the p35S:MKKK7-GFP in mkkk7 5 

background as compared to Col-0. Example of symptom development at 2 dpi in mkkk7 and 6 

p35S:MKKK7-GFP in mkkk7 background. B) Overexpression of MKKK7DD reduces 7 

resistance to Pst infection. Quantification of bacterial growth in Col-0 and two independent 8 

iMKKK7DD lines. Four to five-week-old plants were pressure-infiltrated with virulent Pst 9 

DC3000 and at 2 dpi leaf disks were harvested and bacteria re-isolated. The number of 10 

colony forming units (cfu/cm2

 13 

) was determined at t=2 days post inoculation (dpi). Data 11 

represents mean values ± SEM (n=6; *, p<0.05; paired t-test). 12 

 14 

Table I FLS2-GFP co-immunoprecipitates with MKKK7.  15 

Protein 

name 

  

Protein 

accession 

numbers 

Peptide sequence Best Mascot Ion Score 

 

FLS2-GFP 

ctrl 

FLS2-GFP  

flg22  

Lti6B-GFP 

 

MAPKKK7/6 AT3G13530.1/ 

AT3G07980.1 

(R)GIPVLVGFLEADYAK(Y) - 27.8 - 

MAPKKK7 AT3G13530.1 (K)HITGIER(H) - 28.5 - 

MAPKKK7/6 AT3G13530.1/ 

AT3G07980.1 

(R)SGGQVLVK(Q) - 40.5 - 

MAPKKK7/6 AT3G13530.1/ 

AT3G07980.1 

(K)VADLLLEFAR(A) - 50.1 - 

MAPKKK7 AT3G13530.1 (K)TLAVNGLTPLLISR(L) 

 

- 78 - 

MAPKKK7 AT3g13530.1 (R)HGGGEEPSHASTSN

SQR(S) 

 

22  20.3 
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 1 

Table 1 FLS2-GFP co-immunoprecipitates with MKKK7.  2 

Protein 

name 

  

Protein 

accession 
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AtMKKK6|NP_187455         SEKDAE-GSQEVVESVSAEKVEVTKTNS-----KSKLPVIGGASFRSEKDQSSPSDLGEE 354 
BnM3KE1|XP_013686392      SEKDAE-GSEEVTESLSEEKAGMSKSDS-----KSKL---GVASFRSEKDPSSSSDLGEE 351 
CsM3KE|XP_010465194       SEKDDE-GNQDVAESLSAEKVGMSETDS-----KSKLPLVGVASFRSEKDQPTPSDLGED 354 
AtMKKK7|NP_187962         SEKDDE-GSQDAAESLSGENVGISKTDS-----KSKLPLVGVSSFRSEKDQSTPSDLGEE 354 
AlMKKK7|XP_002884970      SEKDDE-GSQDAAESLSAENVGMSKSDS-----KSKLPLLGVSSFRSEKDQSTPSDLGEE 350 
SlM3KE|NP_001234779       IREASNEEDKGAAGSSSSDKAKESSTTL--------ASPEVLETSKSEEVDGASSIRIEG 352 
NbM3KE|ADK36643           DTDASNEDDKGAAGSSSSDKAKESCSVL--------ASPEVSEISKSEEFDGSTSNHLEG 352 
MdM3KE|XP_008340454       GAEISNGDNQGSAESPSAEKVEVAASTIKADSGKELLSTEVPDMGRSDDNPASDVKSVEE 357 
PtM3KE|XP_002307180       EAEILTGDNQRTVQINSVDRTKASVADFKAGSRKESLP-DSEDVSKSDKNTSSDGDVVEE 358 
                            .     .:  .   * :..  : :                   :*:.   :     *  
 
                                                                             
AtMKKK6|NP_187455         LETEASEGRRNTLATKLVGKE-YSIQSS---HSFSQKGE-DGLRKAVKTPSSFGGNELTR 466 
BnM3KE1|XP_013686392      SETESSKNGKNT-LEKQVGKE-SSIHVDQPSHSVGQKGEDRRLRKAVRTPSSVGGNELTR 462 
CsM3KE|XP_010465194       LETEASEARKN----KQVGKE-CSIQVDQTSHSSGLKGEDRGIRKAVKTPSSLGGNELAR 464 
AtMKKK7|NP_187962         LVTETSEARKNTSAIKHVGKE-LSIPVDQTSHSFGRKGEERGIRKAVKTPSSVSGNELAR 461 
AlMKKK7|XP_002884970      LETETSEARKNTSAKKQVGKE-LSIPVDQTSHSFGQKGEERGIRKAVKTPSSVSGNELAR 457 
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MdM3KE|XP_008340454       GEVRSPELTTKNVSGKQGGK-----GVGYRAFGFGTRNQDGSFQKAAKMPVLLGGNELSK 471 
PtM3KE|XP_002307180       DDLESPDARGKNIERRNGGKTSS-ARVENGSFGFATRNQDNGLRKAVKTSMTSGGNELSK 476 
                             .: .        :   .            . . :      :** :      ****:: 
 
                                                                     
AtMKKK6|NP_187455         FSDPPGDASLHDLFHPLDKVPEGKTNEASTSTPTANVNQGDSPVADGGKNDLATKLRARI 526 
BnM3KE1|XP_013686392      FSDPPGDASLHDLFQPLDKVPEGKPNEASTSAPTSNVIQGDSPVADGGKNDLATKLRATI 522 
CsM3KE|XP_010465194       FSDPPGDASLHDLFHPLDKVPEGKPNEASTSMPTSNINQGDSPVADGGKNDLATKLRATI 524 
AtMKKK7|NP_187962         FSDPPGDASLHDLFHPLDKVSEGKPNEASTSMPTSNVNQGDSPVADGGKNDLATKLRATI 521 
AlMKKK7|XP_002884970      FSDPPGDASLHDLFHPLDKVSEGKPNEASTSMPTSNVNQGDSPVADGGKNDLATKLRATI 517 
SlM3KE|NP_001234779       FSDPPGDASLDDLFHPLEKNLENRAAEVSLSASSSQIAQNNAI-AETGKNDLATKLRATI 526 
NbM3KE|ADK36643           FSDPPGDASLDDLFHPLEKNLENRAAEVSLSSSSSQIAQSNAV-SETGKNDLATKLRATI 526 
MdM3KE|XP_008340454       FSDTPGDASLDDLFHPLDKHPEDRATEASTSASMSQSNQGNTPGNDAGKSDLATKLRATI 531 
PtM3KE|XP_002307180       FSDTPRDASLDDLFHPLDKNPEDRAAEASTSTSASHMNQGNAIMADAGKNDLAAILRATI 536 
                          *** * ****.***:**:*  * :  *.* *   :.  * ::   : **.***: *** * 
 
                                          
AtMKKK6|NP_187455         NTLYSLSEATRLASISG-DALILDGQTPRARSGQLDPNNPIFSQRET-SPSVIDHPDGLK 823 
BnM3KE1|XP_013686392      NTLYSLNEATRLASISG-GPLSVDGLAPRLRSGQLDPNNPIFSHHES-SLGVIDHPDALK 819 
CsM3KE|XP_010465194       NTLYSLNEATRLASISG-GALIVDGQAPRVRSGQLDPNNPIFTQHET-SLSMIDQPDVLK 821 
AtMKKK7|NP_187962         NTLYSLNEATRLASISG-G---LDGQAPRVRSGQLDPNNPIFGQNETSSLSMIDQPDVLK 816 
AlMKKK7|XP_002884970      NTLYSLNEATRLASISG-GA-IVDGQAPRARSGQLDPNNPIFGQNET-SLSMIDQPDVLK 813 
SlM3KE|NP_001234779       NTLYSLNEAARLASASGGGGFPPDGLAPRPRSGPLDHGNSSFMQTEV-PPYGTDQPDMLK 821 
NbM3KE|ADK36643           NTLYSLNEAARLASASGGSGFPPDGLAPRPRSGPLDPGNSSFMQTEM-PPYGTDQPDMLK 821 
MdM3KE|XP_008340454       NTLYSLNEATRLASISVGGGFPLEGSAQRPRSGSLDSGHPIFAQSDV-LLSTTDQHDLSK 828 
PtM3KE|XP_002307180       NTLYSLNEATRLASISVGTGFPLDGLSQRPRSGPLDSNHPIFIQSET-ALSASDQPDVFK 832 
                          ******.**:**** *       :* : * *** **  .  * : :       *: *  * 
 
                                                                          
AtMKKK6|NP_187455         TRNG--------GGEEPSHALTSNSQSSDVHQPDA--LHPDGDRPRLSSVVADA------ 867 
BnM3KE1|XP_013686392      TKHV--------GGEEPSHASTSNSQRSDIHQP-------DGDRPRLSSAAADGS----- 859 
CsM3KE|XP_010465194       TRHG--------GGEEPSHASTSNSQRSDVHQPDA--LHPDGDRPRLSSVTPDASTS--- 868 
AtMKKK7|NP_187962         TRHG--------GGEEPSHASTSNSQRSDVHQPDA--LHPDGDKPRVSSVAPDASTS--- 863 
AlMKKK7|XP_002884970      TRHG--------VGEEPSHASTSNSQRSDVHQPDA--LHPDGDRPRVSSVAPDASTS--- 860 
SlM3KE|NP_001234779       IKNGD--RVLPSGMQEPSRNSASHS-------PDSPFFRQDGERPRSSNATMEASGLSRL 872 
NbM3KE|ADK36643           IKNGE--RVLPAGMQELSRTSASHS-------PDSPYFRQDFERPRSSNATVEVSGPSKL 872 
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Figure EV4; Mithoe et al., 
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