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online 7 January 2014)

We have performed broadband (10 MHz–18 GHz) and narrowband (9.7 GHz) ferromagnetic

resonance (FMR) measurements on permalloy thin films patterned with quasiperiodic Ammann

tilings having eightfold rotational symmetry. We observed highly reproducible mode structures in

the low-frequency, hysteretic regime in which domain walls and unsaturated magnetization

textures exist. A minimum of 10 robust modes were observed in patterned samples, compared to

the single uniform mode observed in unpatterned permalloy films. The field dependence and

approximate eightfold rotational symmetry of the FMR spectra are in good agreement with

micromagnetic simulations that confirm the importance of patterning for controlling static and

dynamic magnetic response. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4859035]

Ferromagnetic (FM) antidot lattices (ADL) have

attracted attention from technological1,2 as well as basic sci-

ence perspectives.2–4 Previous studies on FM ADL have

mainly focused on periodic arrays (square, rectangular,

kagome, etc.). A recent study5 of fivefold rotationally sym-

metric artificial quasicrystals (QCs) (Penrose P2 tilings) pat-

terned into permalloy films displayed static and dynamic

properties that differ from those observed for periodic ADL.

The ferromagnetic resonance (FMR) spectra for finite

Penrose tilings were of particular interest, since they exhib-

ited tenfold rotational symmetry that is only expected for infi-

nite patterns, as well as novel “asymmetric” mode signatures

in the hysteretic reversal regime. Herein, we report a FMR

study of a second class of permalloy thin films patterned into

finite, quasiperiodic Ammann tilings (ATs) that exhibit eight-
fold rotational symmetry.

We patterned AT by incorporating a deflation algorithm

into our electron beam lithography (EBL) software. The

algorithm was initialized with an arrangement of squares and

rhombi (with interior angles of 45� and 135�, such as shown

in Fig. 1) known as the “0th generation” AT. Note the tiling

can be viewed as a network of film segments of length d and

width W. A single iteration of the deflation method on a nth

generation tiling will produce a ðnþ 1Þth generation tiling,

as described elsewhere.6,7 The new tiling was scaled such

that the segment length d remained the same as for the origi-

nal 0th generation tiling. Two samples of differing genera-

tion were prepared with different edge lengths d for the

squares and rhombi, and common width W and thickness t
(see Table I). Fig. 1 exhibits an SEM image of one write field

for sample III136C. Multiple write fields were copied onto a

square array in order to increase the (signal-to-noise-ratio)

SNR for magnetic measurements.

Narrow-band (NB) FMR measurements were carried out

at microwave frequency f¼ 9.7 GHz in applied DC magnetic

fields H � 10 kOe. Broad-band (BB) FMR measurements

were performed at room temperature using a meander line

method,8 in which f can be varied continuously from

10 MHz up to 20 GHz. The applied field H could be swept

continuously through zero over the range þ6 kOe to �6

kOe, and could be rotated within the film plane by an angle

/ between H and the x- axis (see Fig. 1).

Micromagnetic simulations (MS) were performed to

interpret the FMR data by importing a graphic rendition of the

0th generation AT (with d ¼ 1 lm, W¼ 130 nm, and

FIG. 1. SEM image of one write field for Sample III136C (see Table I).

Non-magnetic substrate and permalloy regions correspond to the dark and

the bright areas, respectively. The magnetic field can be rotated by angle /
with respect to the x- axis, defined to be horizontal.

a)Author to whom correspondence should be addressed. Electronic mail:

vinayak.bhat@uky.edu.

0021-8979/2014/115(17)/17C502/3/$30.00 VC 2014 AIP Publishing LLC115, 17C502-1
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t¼ 25 nm) into OOMMF code9 using a 10 nm� 10 nm

� 25 nm grid (with exchange constant A ¼ 13 � 10�12 J
m and

saturation magnetization MS ¼ 8:6 � 105 A
m). Larger genera-

tions were not simulated due to computational limitations.

The equilibrium magnetization was calculated for the given

applied DC field. A dynamical FMR simulation was con-

ducted by applying a Gaussian magnetic field pulse (of 20 Oe

amplitude and 2.5 ps FWHM duration) perpendicular to the

film plane, followed by logging 1024 successive values of

magnetization vector for each grid pixel at 10 ps time steps.

The perpendicular component of magnetization was recorded

as a function of x, y, and time step. The absorbed power for

each pixel was obtained by squaring the FFT amplitude, and

the signal phase was obtained by calculating the imaginary

part of the amplitude. The analysis yields an area map of the

magnetization tilt amplitude at the frequency of response.

Comparison with the experimental total absorbed power at a

given frequency was achieved by integrating local power over

all pixels for each frequency step.

Fig. 2 shows the experimental BB FMR spectra for

Sample III128D for microwave frequency f¼ 15.5 GHz and

H oriented along x axis (/ ¼ 0�). We observed five promi-

nent modes symmetrically placed at H ¼ 61:227, 61:635,

62:018, 63:151, and 63:763 kOe in both negative and posi-

tive field sweeps. The 15.5 GHz spectra also exhibit a lower-

field, “asymmetric” mode that exhibits clear hysteresis:

When the DC field was scanned from positive saturation

(H¼þ6 kOe) to negative saturation (H¼�6 kOe), only one

mode signature was observed at H¼�0.33 kOe, on the neg-
ative side of zero. On the other hand, when magnetic field

was swept from negative saturation (H¼�6 kOe), a corre-

sponding mode signature was observed only at H¼þ0.29

kOe, on the positive side of zero. MS indicate the presence

of domain walls and complex switching behavior of the

permalloy segments in the hysteretic regime give rise to the

asymmetric mode near zero field. The reproducibility of the

mode structure over a wide range of fields in Fig. 2 is evi-

dently due to shape anisotropy induced by patterning.5

Fig. 3 shows the experimental (4th generation) BB FMR

data and MS results (0th generation) for the frequency vs.

field dispersion relations for ten mode branches. The simu-

lated FMR mode branches 1, 4, 5, and 6 are in very good

agreement with experiments; whereas the experimental BB

FMR data only reveal one broad mode located in between

the simulated branches 2 and 3.

Figs. 4(a)–4(c) show simulated local power maps corre-

sponding to f¼ 16.5 GHz (H¼ 4 kOe; branch 1 in Fig. 3),

f¼ 14.5 GHz (H¼ 2 kOe; branch 3 in Fig. 3), and

f¼ 18.4 GHz (H¼ 2 kOe; branch 6 in Fig. 3). The dynamic

simulations, done only for the 0th generation AT, suggest

FMR modes at jHj ¼ 1:227, 1.63, and 3.763 kOe (see Fig. 2)

are due to power absorption by permalloy segments at an

angle h ¼ 0� and 180� (branch 6 in Fig. 3), 645� (branch 5

in Fig. 3), and 690� (branch 1 in Fig. 3), respectively. Here,

h is defined to be the angle between a segment’s long axis

and the10 direction of the film. A FMR mode at jHj ¼ 2:018

kOe is due to power absorption in both h ¼ 645� and 690�

segments (branch 4 in Fig. 3). A weaker mode at jHj ¼
3:151 kOe may be a second harmonic of the mode responsi-

ble for power absorption in both 645� and 690� segments

(overlapping branch 2 and/or 3 in Fig. 3).

Fig. 5 shows NB FMR spectra for different field angles,

0� � / � 90�, and f¼ 9.7 GHz for Sample III136C. For

/ ¼ 0�, we observed FMR peaks at jHj ¼ 1:18, 1.07, 0.929,

0.809, and 0.682 kOe. Fig. 5 shows the FMR spectra exhibit

near-eightfold rotational symmetry, consistent with the

TABLE I. Parameters of Ammann tilings.

Sample, generation

d
(nm)

W
(nm)

QC apical

width (lm)

No. write

fields

III128D, 4th 1000 130 160 144

III136C, 0th 7000 912 83 400

Simulation, 0th 1000 130 12.2 N/A

FIG. 2. BB FMR spectra for Sample III128D for frequency f¼ 15.5 GHz.

Note reproducible, symmetric FMR spectra for DC fields jHj > 1 kOe;

asymmetric modes only occur on one side of origin near jHj ¼ 0:3 kOe

(branch 10 in Fig. 3). The blue arrow marks an asymmetric mode signature

for negative sweep and the red arrow marks the same mode for positive

sweep. Numbers denote mode branches.

FIG. 3. BB FMR frequency f vs. DC field H for Sample III128D. Scattered

points and solid lines represent experimental data and simulations, respec-

tively. Numbers denote mode branches. Note the low-field asymmetric

mode branches 7–10 in the hysteretic regime.

17C502-2 Bhat et al. J. Appl. Phys. 115, 17C502 (2014)
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geometry of the AT (Fig. 1). Small departures (1%–7%) of

the resonance field data from eightfold symmetry is under

investigation.

We have fabricated novel artificial FM quasicrystals that

are eightfold rotationally symmetric. NB FMR data display

eightfold rotationally symmetric FMR absorption peaks. Our

FMR data include many more modes than were seen in a

previous study of a periodic antidot lattice,10 due to the com-

plex topology and lower symmetry of the AT. BB FMR

experiments exhibit symmetrically placed modes in the near

saturated regime and novel asymmetric modes in the hyste-

retic regime, similar to recent observations of Penrose P2

tilings.5

Research at the University of Kentucky was supported

by U.S. DOE Grant No. DE-FG02-97ER45653 and the U.K.

Center for Advanced Materials (supported by U.S. NSF

Grant No. EPS-0814194).
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FIG. 4. (a) Simulated OOMMF power absorption maps for a 0th generation AT with d ¼ 1 lm, W¼ 130 nm, and t¼ 25 nm, field angle / ¼ 0�, frequency

f¼ 16.5 GHz, and applied DC field H¼ 4 kOe. Color scale indicates the squared magnetization tipping amplitude (red is greatest). This power map corre-

sponds to branch 1 (brown) in Fig. 3. (b) Power map for f¼ 14.1 GHz, H¼ 2 kOe corresponding to branch 3 (blue) in Fig. 3. (c). Power map for f¼ 18.4 GHz,

H¼ 2 kOe corresponding to branch 6 (purple) in Fig. 3.

FIG. 5. NB FMR absorption derivative versus applied DC magnetic field H
of Sample III136C at T¼ 300 K for frequency f¼ 9.7 GHz. Colors corre-

spond to different angles 0� � / � 90�. Note that / ¼ 0�, 45�, and 90� are

reproduced, which is indicative of eightfold rotational symmetry.
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