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Magnetic response of aperiodic wire networks based on Fibonacci
distortions of square antidot lattices

B. Farmer,1 V. S. Bhat,1 J. Sklenar,2 E. Teipel,1 J. Woods,1 J. B. Ketterson,2 J. T. Hastings,3

and L. E. De Long1,a)
1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
2Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
3Department of Electric and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA

(Presented 5 November 2014; received 22 September 2014; accepted 27 October 2014; published

online 5 March 2015)

The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely

altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have

fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted

according to an aperiodic Fibonacci sequence applied to two lattice translations, d1¼ 1618 nm and

d2¼ 1000 nm. The wire segment thickness is fixed at t¼ 25 nm, and the width W varies from 80 to

510 nm. We measured the DC magnetization between room temperature and 5K. Room-

temperature, narrow-band (9.7GHz) ferromagnetic resonance (FMR) spectra were acquired for

various directions of applied magnetic field. The DC magnetization curves exhibited pronounced

step anomalies and plateaus that signal flux closure states. Although the Fibonacci distortion breaks

the fourfold symmetry of a finite periodic square ADL, the FMR data exhibit fourfold rotational

symmetry with respect to the applied DC magnetic field direction.VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4913820]

Advances in submicron-scale lithography make it possi-

ble to pattern ferromagnetic (FM) films into wire segments

whose high shape anisotropy and narrow width W strongly

pin domain walls (DWs).1,2 Consequently, FM films pat-

terned into periodic wire networks or antidot lattices (ADLs)

can be engineered to control spin wave propagation and low-

field reversal.3,4 The bipolar “Ising” character of the magnet-

izations of narrow sub-micron segments in wire networks

also permits controlled studies of frustration on cooperative

behavior of artificial spin ices (ASI).5

Early ferromagnetic resonance (FMR) studies6,7 of peri-

odic lattices of submicron permalloy rings and dots demon-

strated the high sensitivity of spectra to the separation, edge

imperfections, and small asymmetries of pattern features.

Recent work implies low-field hysteresis, and spin wave

propagation and localization are strongly affected by disor-

der in patterned FM films.3,4,8,9 On the other hand, all pattern

vertices have very similar local environments in large-area

periodic wire networks, which implies the order of segment

switching in the reversal process is stochastic, and difficult

to control.8 It is therefore important to investigate effects of

controlled pattern disorder on the stability and dynamics of

DW, reversal, and spin wave propagation.

We are motivated by a recent study9 of 2D artificial quasi-

crystals based on the Penrose P2 tiling (P2T) that has aperiodic

translational symmetry combined with unusual fivefold rota-

tional symmetry. Since quasicrystal patterns are determined by

precisely defined algorithms, they are not amorphous, but

long-range ordered,10 and they provide an interesting

paradigm for “intermediate order.”11 Numerical simulations,

DC magnetization data, and FMR spectra of P2T patterned

into permalloy thin films reveal highly controlled magnetiza-

tion reversal and mode symmetries.8 This is surprising, given

local switching events in aperiodic P2T are mediated by a

large number of inequivalent pattern vertices having asymmet-

ric two-, three-, four-, and five-fold coordinations.9

Quasicrystal tilings are topologically related to a

Fibonacci sequence12,13 that underpins an algorithm for con-

structing a one-dimensional lattice of long and short segment

lengths, d1 and d2. The 1D Fibonacci lattice is long-range-or-

dered, but aperiodic, and can be viewed as a continuous dis-

tortion of a periodic lattice (i.e., d1¼ d2). However, the

aperiodic, fivefold symmetry of the P2T cannot be obtained

from a continuous distortion of a periodic lattice in two

dimensions. Fibonacci lattices therefore form a novel class of

thin-film FM metamaterials whose aperiodic, long-range order

can be continuously varied in ways that are inaccessible to ar-

tificial quasicrystals with “forbidden” (fivefold) symmetries.12

Two-dimensional, multiply-connected wire networks of

permalloy were fabricated on square Fibonacci lattices

(SFLs)12 using electron beam lithography and lift-off techni-

ques (see Fig. 1). A continuous distortion (d1> d2) is applied
along both orthogonal primitive vectors of a periodic square

lattice. In the present study, the lengths of long (d1) and short

(d2) segments were kept constant at 1618 nm and 1000 nm,

respectively, but the segment width (W) was varied (see

Table I) to cover a range of stability for DW occupying the

interior of film segments (see Fig. 3). A permalloy film of

thickness 25 nm and 2� 2mm2 overall dimension was de-

posited using electron beam evaporation, with a base pres-

sure of 10�7Torr.

a)Author to whom correspondence should be addressed. Electronic mail:

delong@pa.uky.edu
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DC magnetization data were acquired at room tempera-

ture with a Quantum Design MPMS5 SQUID Magnetometer

in DC applied fields in the range H¼650 kOe. Room-

temperature, narrow-band (NB) FMR measurements

were carried out at frequency f¼ 9.7GHz using a Bruker

ESP 300E EPR Spectrometer in applied magnetic fields

H� 10 kOe.

The measured field dependences of the DC magnetiza-

tion M(H) of samples having different segment widths W are

compared in Fig. 2 for temperature T¼ 310K and applied

field H along a primitive12 SFL direction (horizontal axis in

Fig. 1). Numerical simulations14 of the magnetization for

T¼ 0 indicate that domain walls occupy the interior of film

segments (non-Ising behavior) for samples III135A and

III135B, as shown in Fig. 3. Large “knees” at strong drops in

M(H) are prominent features of data in Fig. 2 for samples

with larger segment widths. Near-horizontal plateaus extend-

ing over wide (e.g., 340Oe and 150Oe for samples III136A

and III135E, respectively) field intervals in the middle of the

reversal regime are striking features of the hysteresis loops

of samples with the smallest segment widths, which simula-

tions show promote Ising behavior.

Previous data3,15 for the hysteresis loops of periodic
square permalloy ADL with segment widths W� 150 nm did

not exhibit low-field plateaus. Small knee anomalies inM(H)
were previously ascribed to the switching of individual or

small groups of film segments in simulations of P2T;9

whereas large drops in magnetization were associated with

the generation of closed dipole loops (“vortices”) formed by

near-neighbor segments.8

Reduced temperature increases the coercive field of

sample III136A, as shown in Fig. 4. The T¼ 5K data

exhibit a clear asymmetry that is commonly attributed to an

exchange bias effect, which implies a magnetically hard

FIG. 1. (a) Distorted, aperiodic SFL sample III136A with long and short lat-

tice spacings (corresponding to scale bars) d1¼ 1618 nm and d2¼ 1000 nm,

and segment width W¼ 80 nm. Light color is Py; dark color is Si substrate.

(b) SEM image of aperiodic Fibonacci lattice sample III135B composed of

long and short lattice spacings d1¼ 1618 nm and d2¼ 1000 nm, and segment

width W¼ 510 nm. Light color is Py; dark color is Si substrate. Scale bar

indicates 1000 nm.

TABLE I. Square Fibonacci lattice parameters.

Sample number Segment dimensions HC (Oe) Segment width

III135A d1¼ 1618 nm 130 W¼ 350 nm

d2¼ 1000 nm

III135B d1¼ 1618 nm 70 W¼ 510 nm

d2¼ 1000 nm

III135E d1¼ 1618 nm 230 W¼ 150 nm

d2¼ 1000 nm

III136A d1¼ 1618 nm 220 W¼ 80 nm

d2¼ 1000 nm

FIG. 3. Simulated magnetization distribution for sample with W¼ 510 nm.

This is in the remnant state after field saturation along the x-direction. DWs

are found in both segments and vertices, indicating we are above the Ising

regime.

FIG. 2. Magnetization hysteresis M(H) for angle /¼ 0� between applied

magnetic field H and the [10] SFL direction for several samples having dif-

ferent segment widths W. (The increased scatter for sample III135E data is

due to the DC (rather than RSO) scan method used in SQUID magnetometer

experiments.)
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antiferromagnetic layer (e.g., NiO) is in intimate contact

with a soft FM layer (e.g., Py). It is likely that the large sur-

face-to-volume ratio of the Py wire segments shown in Fig.

1(a) enables a Ni-rich surface oxide layer to act as a hard

antiferromagnetic bias on the bulk, soft Py segment

switching.

Figure 5 shows FMR absorption derivative data for a

SFL sample III135B with W¼ 510 nm. The 9.7GHz data

represent a largely saturated regime in which we observed

four or more modes on both sides of zero applied field.

Overall, the FMR modes exhibit hysteresis at very low fields

H�HC, but are highly symmetric and reproducible, which

suggests the DW structure evolves reproducibly with applied

field outside the magnetic reversal regime.

Figure 6 shows the variations of the resonance fields on

applied field direction for several FMR modes observed for

sample III135B. Assuming several modes cross one another,

they separately exhibit twofold rotational symmetry, whereas

the overall plot obeys fourfold symmetry. This angular sym-

metry is in accord with the strong shape anisotropy of Ising-

like segments in applied fields outside the reversal regime,

and with the “average” fourfold symmetry of the aperiodic

SFL (i.e., the equal numbers of long and short segments

aligned parallel to either the vertical or horizontal SFL

directions).9,12

As anticipated, FMR spectra and magnetization curves

for SFL are more complex than comparable results for simi-

lar periodic square permalloy ADL.3,15 Additional broad-

band FMR and numerical simulation studies are underway to

investigate the origins of these differences.

Research at the University of Kentucky was supported by

U.S. DoE Grant No. DE-FG02-97ER45653, the UK Center for

Advanced Materials (supported by U.S. NSF Grant No. EPS-

0814194), the UK Center for Computational Sciences, and the

UK Center for Nanoscience and Engineering.
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FIG. 4. Horizontal magnetization Mx normalized to saturation value MS ver-

sus applied DC field for sample III136A at various temperatures T shown.

Notice the asymmetry with respect to field for the T¼ 5K data. The sample

was positively saturated at H¼ 50 kOe, then returned to H¼ 0Oe at

T¼ 300K, then zero-field-cooled to T¼ 5K, where the sample was again

saturated at H¼ 50 kOe. Blue data were taken during a slow sweep from

þ50 to �50 to þ50 to 0 kOe. The green data were taken in a reversed field

sequence, �50 to þ50 to �50 to þ50 to �50 to 0 kOe at T¼ 5K. After the

sample was returned to H¼ 0Oe, it was heated to T¼ 310K, and the red

data were taken, which were symmetric about H¼ 0Oe. For the black data,

the sample was initially placed in H¼�50 kOe (negatively saturated) at

T¼ 310K then cooled to T¼ 5K, where the protocol for the blue data was

repeated in reverse.

FIG. 5. FMR absorption derivative versus applied field H for sample

III135B having segment widthW¼ 510 nm. DC field was aligned at an angle

/¼ 60� with respect to the SFL10 direction. At least four prominent modes

are visible in a negative field sweep from H¼ 12 kOe.

FIG. 6. FMR resonance fields versus angle / between the applied field H
and the direction10 of sample III135B. At least four prominent modes are

visible with twofold symmetry; but the spectra collectively exhibit fourfold

symmetry. Colored data points indicate assignments to particular modes that

are assumed to cross (rather than repel) one another.
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