186 research outputs found

    Traumatic thoracolumbar spine fractures

    Get PDF
    Traumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture mechanism and treatment options. Fracture care has improved by incorporating scientific research in the whole continuum from basic science to the clinical application. In the following some aspects of the treatment of traumatic thoracolumbar spine fractures will be discussed with emphasis on the randomized clinical study of operative versus non-operative treatment of burst fractures of the thoracolumbar spine

    Gastroenteritis Caused by Norovirus GGII.4, the Netherlands, 1994–2005

    Get PDF
    From 1994 through 2005, gastroenteritis outbreaks caused by norovirus generally increased in the Netherlands, with 3 epidemic seasons associated with new GGII.4 strains. Increased percentages of GGII.4 strains during these epidemics, followed by a sharp decrease in their absolute and relative numbers, suggest development of immunity

    Phylodynamic Reconstruction Reveals Norovirus GII.4 Epidemic Expansions and their Molecular Determinants

    Get PDF
    Noroviruses are the most common cause of viral gastroenteritis. An increase in the number of globally reported norovirus outbreaks was seen the past decade, especially for outbreaks caused by successive genogroup II genotype 4 (GII.4) variants. Whether this observed increase was due to an upswing in the number of infections, or to a surveillance artifact caused by heightened awareness and concomitant improved reporting, remained unclear. Therefore, we set out to study the population structure and changes thereof of GII.4 strains detected through systematic outbreak surveillance since the early 1990s. We collected 1383 partial polymerase and 194 full capsid GII.4 sequences. A Bayesian MCMC coalescent analysis revealed an increase in the number of GII.4 infections during the last decade. The GII.4 strains included in our analyses evolved at a rate of 4.3–9.0×10−3 mutations per site per year, and share a most recent common ancestor in the early 1980s. Determinants of adaptation in the capsid protein were studied using different maximum likelihood approaches to identify sites subject to diversifying or directional selection and sites that co-evolved. While a number of the computationally determined adaptively evolving sites were on the surface of the capsid and possible subject to immune selection, we also detected sites that were subject to constrained or compensatory evolution due to secondary RNA structures, relevant in virus-replication. We highlight codons that may prove useful in identifying emerging novel variants, and, using these, indicate that the novel 2008 variant is more likely to cause a future epidemic than the 2007 variant. While norovirus infections are generally mild and self-limiting, more severe outcomes of infection frequently occur in elderly and immunocompromized people, and no treatment is available. The observed pattern of continually emerging novel variants of GII.4, causing elevated numbers of infections, is therefore a cause for concern

    Selection of a phylogenetically informative region of the norovirus genome for outbreak linkage

    Get PDF
    The recognition of a common source norovirus outbreak is supported by finding identical norovirus sequences in patients. Norovirus sequencing has been established in many (national) public health laboratories and academic centers, but often partial and different genome sequences are used. Therefore, agreement on a target sequence of sufficient diversity to resolve links between outbreaks is crucial. Although harmonization of laboratory methods is one of the keystone activities of networks that have the aim to identify common source norovirus outbreaks, this has proven difficult to accomplish, particularly in the international context. Here, we aimed at providing a method enabling identification of the genomic region informative of a common source norovirus outbreak by bio-informatic tools. The data set of 502 unique full length capsid gene sequences available from the public domain, combined with epidemiological data including linkage information was used to build over 3,000 maximum likelihood (ML) trees for different sequence lengths and regions. All ML trees were evaluated for robustness and specificity of clustering of known linked norovirus outbreaks against the background diversity of strains. Great differences were seen in the robustness of commonly used PCR targets for cluster detection. The capsid gene region spanning nucleotides 900–1,400 was identified as the region optimally substituting for the full length capsid region. Reliability of this approach depends on the quality of the background data set, and we recommend periodic reassessment of this growing data set. The approach may be applicable to multiple sequence-based data sets of other pathogens

    Influence of Novel Norovirus GII.4 Variants on Gastroenteritis Outbreak Dynamics in Alberta and the Northern Territories, Canada between 2000 and 2008

    Get PDF
    BACKGROUND: Norovirus GII.4 is the predominant genotype circulating worldwide over the last decade causing 80% of all norovirus outbreaks with new GII.4 variants reported in parallel with periodic epidemic waves of norovirus outbreaks. The circulating new GII.4 variants and the epidemiology of norovirus outbreaks in Alberta, Canada have not been described. Our hypothesis is that the periodic epidemic norovirus outbreak activity in Alberta was driven by new GII.4 variants evolving by genetic drift. METHODOLOGY/PRINCIPAL FINDINGS: The Alberta Provincial Public Health Laboratory performed norovirus testing using RT-PCR for suspected norovirus outbreaks in the province and the northern Territories between 2000 and 2008. At least one norovirus strain from 707 out of 1,057 (66.9%) confirmed norovirus outbreaks were successfully sequenced. Phylogenetic analysis was performed using BioNumerics and 617 (91.1%) outbreaks were characterized as caused by GII.4 with 598 assigned as novel variants including: GII.4-1996, GII.4-2002, GII.4-2004, GII.4-2006a, GII.4-2006b, GII.4-2008a and GII.4-2008b. Defining July to June of the following year as the yearly observation period, there was clear biannual pattern of low and high outbreak activity in Alberta. Within this biannual pattern, high outbreak activity followed the emergence of novel GII.4 variants. The two variants that emerged in 2006 had wider geographic distribution and resulted in higher outbreak activity compared to other variants. The outbreak settings were analyzed. Community-based group residence was the most common for both GII.4 variants and non-GII.4 variants. GII.4 variants were more commonly associated with outbreaks in acute care hospitals while outbreaks associated non-GII.4 variants were more commonly seen in school and community social events settings (p<0.01). CONCLUSIONS/SIGNIFICANCE: The emergence of new norovirus GII.4 variants resulted in an increased norovirus outbreak activity in the following season in a unique biannual pattern in Alberta over an eight year period. The association between antigenic drift of GII.4 strains and epidemic norovirus outbreak activity could be due to changes in host immunity, viral receptor binding efficiency or virulence factors in the new variants. Early detection of novel GII.4 variants provides vital information that could be used to forecast the norovirus outbreak burden, enhance public health preparedness and allocate appropriate resources for outbreak management

    Viral Gastroenteritis Associated with Genogroup II Norovirus among U.S. Military Personnel in Turkey, 2009

    Get PDF
    The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks

    Of gastro and the gold standard: evaluation and policy implications of norovirus test performance for outbreak detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The norovirus group (NVG) of caliciviruses are the etiological agents of most institutional outbreaks of gastroenteritis in North America and Europe. Identification of NVG is complicated by the non-culturable nature of this virus, and the absence of a diagnostic gold standard makes traditional evaluation of test characteristics problematic.</p> <p>Methods</p> <p>We evaluated 189 specimens derived from 440 acute gastroenteritis outbreaks investigated in Ontario in 2006–07. Parallel testing for NVG was performed with real-time reverse-transcriptase polymerase chain reaction (RT<sup>2</sup>-PCR), enzyme immunoassay (EIA) and electron microscopy (EM). Test characteristics (sensitivity and specificity) were estimated using latent class models and composite reference standard methods. The practical implications of test characteristics were evaluated using binomial probability models.</p> <p>Results</p> <p>Latent class modelling estimated sensitivities of RT<sup>2</sup>-PCR, EIA, and EM as 100%, 86%, and 17% respectively; specificities were 84%, 92%, and 100%; estimates obtained using a composite reference standard were similar. If all specimens contained norovirus, RT<sup>2</sup>-PCR or EIA would be associated with > 99.9% likelihood of at least one test being positive after three specimens tested. Testing of more than 5 true negative specimens with RT<sup>2</sup>-PCR would be associated with a greater than 50% likelihood of a false positive test.</p> <p>Conclusion</p> <p>Our findings support the characterization of EM as lacking sensitivity for NVG outbreaks. The high sensitivity of RT<sup>2</sup>-PCR and EIA permit identification of NVG outbreaks with testing of limited numbers of clinical specimens. Given risks of false positive test results, it is reasonable to limit the number of specimens tested when RT<sup>2</sup>-PCR or EIA are available.</p

    Norovirus infections in children under 5 years of age hospitalized due to the acute viral gastroenteritis in northeastern Poland

    Get PDF
    The primary aim of this study was to evaluate the frequency and seasonality of norovirus infection in hospitalized Polish children under 5 years of age, and a secondary aim was to compare the clinical severity of norovirus and rotavirus disease. The prospective surveillance study was carried out from July 2009 through June 2010. Stool samples from 242 children hospitalized due to acute viral gastroenteritis were tested for rotavirus group A and adenovirus with commercial immunochromatographic test and for norovirus with EIA assay. Single norovirus infection was found in 35/242 (14.5%) patients and in a further 5 (2.1%) children as co-infection with rotavirus. Overall, norovirus was detected in 16.5% of stool specimens. Norovirus infections tended to peak from October to November and again from February to March. In autumn months and in February, the proportion of norovirus gastroenteritis cases was equal or even surpassed those of rotavirus origin. Both norovirus and rotavirus infections most commonly affected children between 12 and 23 months of age. The low-grade or no fever was significantly more common in children infected with norovirus (94.3%) compared to rotavirus cases (52.9%). Overall, norovirus gastroenteritis was less severe than rotavirus disease with regard to 20-point severity scale (p < 0.05). Noroviruses have emerged as a relevant cause of acute gastroenteritis in Polish children. There is a great need for introducing routine norovirus testing of hospitalized children with gastroenteritis

    Detection of the pandemic norovirus variant GII.4 Sydney 2012 in Rio Branco, state of Acre, northern Brazil

    Full text link
    Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide. Genotype GII.4 is responsible for the majority of outbreaks reported to date. This study describes, for the first time in Brazil, the circulation of NoV GII.4 variant Sydney 2012 in faecal samples collected from children aged less than or equal to eight years in Rio Branco, state of Acre, northern Brazil, during July-September 2012

    Acute norovirus gastroenteritis in children in a highly rotavirus-vaccinated population in Northeast Brazil.

    Get PDF
    Background: Gastroenteritis is one of the most important causes of morbidity and mortality in children and an important etiological agent is norovirus. Objective: We describe the occurrence and characteristics of norovirus diarrhoea in children from Sergipe, Northeast-Brazil, over two consecutive periods of three years following rotavirus vaccine introduction. Study design: A cross sectional hospital-based survey conducted from October-2006 to September-2009 and from July-2011 to January-2013. Acute diarrhoea cases had a stool sample collected and tested for norovirus by RT-PCR and positive samples were sequenced. Results: In total 280 (19.6%) of 1432 samples were norovirus positive, including 204 (18.3%) of 1,113 samples collected during the first period and 76 (23.9%) of 318 collected during the second period. The proportion of children with norovirus infection increased significantly through the second study period (χ2 for trend = 6.7; p = 0.009), was more frequent in rotavirus vaccinated and in younger children (p < 0.001). Of 280 norovirus-positive specimens, 188 (67.1%) were sequenced. Of these, 12 were genogroup I and 176 genogroup II. The main genotype was GII.4 (149/188, 79.3%), followed by GII.2 (6, 3.2%) and GII.6 (5, 2.6%). Conclusion: Norovirus annual detection rates increased over the study period. The detection of norovirus was higher among young children
    corecore