496 research outputs found

    Study of Gaussian Relay Channels with Correlated Noises

    Full text link
    In this paper, we consider full-duplex and half-duplex Gaussian relay channels where the noises at the relay and destination are arbitrarily correlated. We first derive the capacity upper bound and the achievable rates with three existing schemes: Decode-and-Forward (DF), Compress-and-Forward (CF), and Amplify-and-Forward (AF). We present two capacity results under specific noise correlation coefficients, one being achieved by DF and the other being achieved by direct link transmission (or a special case of CF). The channel for the former capacity result is equivalent to the traditional Gaussian degraded relay channel and the latter corresponds to the Gaussian reversely-degraded relay channel. For CF and AF schemes, we show that their achievable rates are strictly decreasing functions over the negative correlation coefficient. Through numerical comparisons under different channel settings, we observe that although DF completely disregards the noise correlation while the other two can potentially exploit such extra information, none of the three relay schemes always outperforms the others over different correlation coefficients. Moreover, the exploitation of noise correlation by CF and AF accrues more benefit when the source-relay link is weak. This paper also considers the optimal power allocation problem under the correlated-noise channel setting. With individual power constraints at the relay and the source, it is shown that the relay should use all its available power to maximize the achievable rates under any correlation coefficient. With a total power constraint across the source and the relay, the achievable rates are proved to be concave functions over the power allocation factor for AF and CF under full-duplex mode, where the closed-form power allocation strategy is derived.Comment: 24 pages, 7 figures, submitted to IEEE Transactions on Communication

    Seasonal Noise Versus Subseasonal Signal: Forecasts of California Precipitation During the Unusual Winters of 2015–2016 and 2016–2017

    Get PDF
    Subseasonal forecasts of California precipitation during the unusual winters of 2015–2016 and 2016–2017 are examined in this study. It is shown that two different ensemble forecast systems were able to predict monthly precipitation anomalies in California during these periods with some skill in forecasts initialized near or at the start of the month. The unexpected anomalies in February 2016, as well as in January and February 2017, were associated with shifts in the position of the jet stream over the northeast Pacific in a manner broadly consistent with associations found in larger ensembles of forecasts. These results support the broader notion that what is unpredictable atmospheric noise at the seasonal time scale can become predictable signal at the subseasonal time scale, despite that the lead times and verification averaging times associated with these forecasts are outside the predictability horizons of canonical midrange weather forecasting

    Designer lipid-like peptides

    Get PDF
    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins

    A Vacuum-driven Origami “Magic-ball” Soft Gripper

    Get PDF
    Soft robotics has yielded numerous examples of soft grippers that utilize compliance to achieve impressive grasping performances with great simplicity, adaptability, and robustness. Designing soft grippers with substantial grasping strength while remaining compliant and gentle is one of the most important challenges in this field. In this paper, we present a light-weight, vacuum-driven soft robotic gripper made of an origami “magic-ball” and a flexible thin membrane. We also describe the design and fabrication method to rapidly manufacture the gripper with different combinations of lowcost materials for diverse applications. Grasping experiments demonstrate that our gripper can lift a large variety of objects, including delicate foods, heavy bottles, and other miscellaneous items. The grasp force on 3D-printed objects is also characterized through mechanical load tests. The results reveal that our soft gripper can produce significant grasp force on various shapes using negative pneumatic pressure (vacuum). This new gripper holds the potential for many practical applications that require safe, strong, and simple graspingUnited States. Defense Advanced Research Projects Agency (award number FA8650-15-C-7548)National Science Foundation (U.S.) (award number 1830901)Wyss Institute for Biologically Inspired EngineeringJD.co

    Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks

    Get PDF
    A newly recognized ultrahigh-pressure (UHP) terrane in the Chinese Western Tianshan orogenic belt contains blueschists, eclogites and metapelites. This belt extends westward to the "South Tianshan" in Tajikistan, Kyrgyzstan, Kazakhstan and Uzbekistan fo

    Office-based optical coherence tomographic imaging of human vocal cords

    Get PDF
    Optical coherence tomography (OCT) is an evolving noninvasive imaging modality and has been used to image the larynx during surgical endoscopy. The design of an OCT sampling device capable of capturing images of the human larynx during a typical office based laryngoscopy examination is discussed. Both patient’s and physician\u27s movements were addressed. In vivo OCT imaging of the human larynx is demonstrated. Though the long focal length limits the lateral resolution of the image, the basement membrane can still be readily distinguished. Office-based OCT has the potential to guide surgical biopsies, direct therapy, and monitor disease. This is a promising imaging modality to study the larynx

    Insertion of T4-lysozyme (T4L) can be a useful tool for studying olfactory-related GPCRs.

    Get PDF
    The detergents used to solubilize GPCRs can make crystal growth the rate-limiting step in determining their structure. The Kobilka laboratory showed that insertion of T4-lysozyme (T4L) in the 3rd intracellular loop is a promising strategy towards increasing the solvent-exposed receptor area, and hence the number of possible lattice-forming contacts. The potential to use T4L with the olfactory-related receptors hOR17-4 and hVN1R1 was thus tested. The structure and function of native and T4L-variants were compared. Both receptors localized to the cell membrane, and could initiate ligand-activated signaling. Purified receptors not only had the predicted alpha-helical structures, but also bound their ligands canthoxal (MW = 178.23) and myrtenal (MW = 150.22). Interestingly, the T4L variants had higher percentages of soluble monomers compared to protein aggregates, effectively increasing the protein yield that could be used for structural and function studies. They also bound their ligands for longer times, suggesting higher receptor stability. Our results indicate that a T4L insertion may be a general method for obtaining GPCRs suitable for structural studies

    Parametric sizing study for the design of a lightweight composite railway axle

    Get PDF
    The potential for lightweighting of railway axles was investigated to primarily reduce the unsprung mass of a rail vehicle. The reduction of unsprung mass equates to an overall lighter train which will help to reduce track damage, energy consumption and total operating costs. This work was performed within the NEXTGEAR project which is ascribed under the Shift2Rail program. This paper focusses on the design of a composite railway axle as part of the "Wheelset of the future" Work Package 3. A parametric study is presented for the sizing of one of the design concepts (the full-length pre-manufactured tube axle) that shows the greatest potential for mass reduction. This study uses the existing hollow steel axle as a benchmark for mass, strength and stiffness. The estimated mass of this composite axle is 50 kg. This represents an estimated mass reduction of 75% compared to the existing hollow steel axle
    • 

    corecore