85 research outputs found

    Grafted Human Embryonic Progenitors Expressing Neurogenin-2 Stimulate Axonal Sprouting and Improve Motor Recovery after Severe Spinal Cord Injury

    Get PDF
    7 p.Background: Spinal cord injury (SCI) is a widely spread pathology with currently no effective treatment for any symptom. Regenerative medicine through cell transplantation is a very attractive strategy and may be used in different non-exclusive ways to promote functional recovery. We investigated functional and structural outcomes after grafting human embryonic neural progenitors (hENPs) in spinal cord-lesioned rats.Methods and Principal Findings: With the objective of translation to clinics we have chosen a paradigm of delayed grafting, i.e., one week after lesion, in a severe model of spinal cord compression in adult rats. hENPs were either naive or engineered to express Neurogenin 2 (Ngn2). Moreover, we have compared integrating and non-integrating lentiviral vectors, since the latter present reduced risks of insertional mutagenesis. We show that transplantation of hENPs transduced to express Ngn2 fully restore weight support and improve functional motor recovery after severe spinal cord compression at thoracic level. This was correlated with partial restoration of serotonin innervations at lumbar level, and translocation of 5HT1A receptors to the plasma membrane of motoneurons. Since hENPs were not detectable 4 weeks after grafting, transitory expression of Ngn2 appears sufficient to achieve motor recovery and to permit axonal regeneration. Importantly, we also demonstrate that transplantation of naive hENPs is detrimental to functional recovery.Conclusions and Significance: Transplantation and short-term survival of Ngn2-expressing hENPs restore weight support after SCI and partially restore serotonin fibers density and 5HT1A receptor pattern caudal to the lesion. Moreover, grafting of naive-hENPs was found to worsen the outcome versus injured only animals, thus pointing to the possible detrimental effect of stem cell-based therapy per se in SCI. This is of major importance given the increasing number of clinical trials involving cell grafting developed for SCI patients.This study was supported by the European Union FP6 "RESCUE" STREP; the "Institut pour la Recherche sur la Moelle Epiniere"; the "Academie de Medecine"; the "Societe Francaise de Neurochirurgie"; "Verticale" and the "Association Demain Debout Aquitaine". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection

    Get PDF
    LIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage

    Genes from Chagas Susceptibility Loci That Are Differentially Expressed in T. cruzi-Resistant Mice Are Candidates Accounting for Impaired Immunity

    Get PDF
    Variation between inbred mice of susceptibility to experimental Trypanosoma cruzi infection has frequently been described, but the immunogenetic background is poorly understood. The outcross of the susceptible parental mouse strains C57BL/6 (B6) and DBA/2 (D2), B6D2F1 (F1) mice, is highly resistant to this parasite. In the present study we show by quantitative PCR that the increase of tissue parasitism during the early phase of infection is comparable up to day 11 between susceptible B6 and resistant F1 mice. A reduction of splenic parasite burdens occurs thereafter in both strains but is comparatively retarded in susceptible mice. Splenic microarchitecture is progressively disrupted with loss of follicles and B lymphocytes in B6 mice, but not in F1 mice. By genotyping of additional backcross offspring we corroborate our earlier findings that susceptibility maps to three loci on Chromosomes 5, 13 and 17. Analysis of gene expression of spleen cells from infected B6 and F1 mice with microarrays identifies about 0.3% of transcripts that are differentially expressed. Assuming that differential susceptibility is mediated by altered gene expression, we propose that the following differentially expressed transcripts from these loci are strong candidates for the observed phenotypic variation: H2-Eα, H2-D1, Ng23, Msh5 and Tubb5 from Chromosome 17; and Cxcl11, Bmp2k and Spp1 from Chromosome 5. Our results indicate that innate mechanisms are not of primary relevance to resistance of F1 mice to T. cruzi infection, and that differential susceptibility to experimental infection with this protozoan pathogen is not paralleled by extensive variation of the transcriptome

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Molecular signatures of T-cell inhibition in HIV-1 infection

    Get PDF

    BTLA Signaling in Conventional and Regulatory Lymphocytes Coordinately Tempers Humoral Immunity in the Intestinal Mucosa. Stienne et al

    No full text
    These datasets include analysis of how BTLA regulates transcriptional pathways in lymphocytes, and how this impacts the makeup of the intestinal microbiota in vivo. We hypothesize that anti-BTLA activates discrete transcriptional changes in diverse lymphocyte populations. Bioinformatic analyses here show RNAseq (mouse) and Nanostring (human) data of how anti-BTLA activates inhibitory signaling in mouse and human T cells and B cells. We additionally hypothesize that these transcriptional changes will result in functional changes to T and B cell collaboration in the germinal center reaction, including changes in mucosal IgA production, that impacts the makeup of the microbiome (in mouse). Here we have also analyzed microflora in anti-BTLA and control treated animals, as well as in animals with cell specific deletions in BTLA in T cells or B cells.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    RELATIONSHIP BETWEEN DROP JUMP PERFORMANCE AND LINEAR SPEED IN NCAA DIVISION III BASEBALL PLAYERS

    No full text
    G. Jackson, J. Sedy, K. Alvarenga-Beech, C. Reyes Linfield University, McMinnville, OR Professionals have the challenge of deciding between numerous valid and reliable tests to quantify athletic performance and changes due to training in an efficient and effective manner. Due to cost, time, and energy constraints, professionals are always seeking tests that strongly relate to other methods of assessments. If there is one test that could validly predict performance in a second test, it would be much more efficient in the logistics of measurement and evaluation of athletic performance. PURPOSE: the purpose of this study was to quantify relationships and predictive outcomes between drop jump test (DJ) and linear speed performance. METHODS: Forty-one NCAA Division III baseball players were utilized in this study. All were considered healthy and full participants of their respective team training sessions. All participants reported to the lab for one, 30-minute testing session. Following a standardized dynamic warm-up, their DJ performance was measured. Subjects stood on a 12” box, stepped off, and were instructed to jump as high as they could, as fast as they could as soon as their feet touched the ground. Jump height (JH) and reactive strength index (RSI) were measured. In addition, their linear speed was measuring during a 30-yard sprint (30y). During the 30-yard sprint, their 10-yard time split (10y) and 20- yard time split (20y) were recorded. Linear regressions were utilized to statistically calculate predictive measures from their DJ to their sprint performance. RESULTS: No significant relationships and predictive measures were displayed across DJ metrics to any of the split times during the linear sprint. CONCLUSIONS: The individual metrics of the DJ test did not significantly relate to linear sprint times. Therefore, DJ performance could not predict linear speed performance in this specific athletic group. Many limitations exist from the testing conditions that could have affected the data, so this topic must be investigated further to uncover the relationships
    corecore