194 research outputs found

    Young children's sentence comprehension: Neural correlates of syntax-semantic competition

    Get PDF
    Sentence comprehension requires the assignment of thematic relations between the verb and its noun arguments in order to determine who is doing what to whom. In some languages, such as English, word order is the primary syntactic cue. In other languages, such as German, case-marking is additionally used to assign thematic roles. During development children have to acquire the thematic relevance of these syntactic cues and weigh them against semantic cues. Here we investigated the processing of syntactic cues and semantic cues in 2- and 3-year-old children by analyzing their behavioral and neurophysiological responses. Case-marked subject-first and object-first sentences (syntactic cue) including animate and inanimate nouns (semantic cue) were presented auditorily. The semantic animacy cue either conflicted with or supported the thematic roles assigned by syntactic case-marking. In contrast to adults, for whom semantics did not interfere with case-marking, children attended to both syntactic and to semantic cues with a stronger reliance on semantic cues in early development. Children’s event-related brain potentials indicated sensitivity to syntactic information but increased processing costs when case-marking and animacy assigned conflicting thematic roles. These results demonstrate an early developmental sensitivity and ongoing shift towards the use of syntactic cues during sentence comprehension

    Ventricular constraint in dilated cardiomyopathy: A new, compliant textile mesh exerts prophylactic and therapeutic properties

    Get PDF
    BackgroundDilated cardiomyopathy is associated with a progressive decrease in cardiac function, leading to end-stage heart failure. We aimed to stop this process by mechanically constraining the heart with a new, compliant textile mesh.MethodsIn 16 male Munich minipigs (50 ± 7 kg), dilated cardiomyopathy with congestive heart failure was induced through 4 weeks of rapid ventricular pacing (220 beats/min). In the early-mesh group (n = 8), a polyvinylidene fluoride mesh was positioned around both ventricles before pacing was started. In the other group (n = 8), experimental dilated cardiomyopathy through rapid pacing was induced (no mesh). After mesh grafting, rapid pacing was continued (late mesh).ResultsRapid pacing in the no-mesh group (control group) significantly decreased both systolic (cardiac output, peak systolic pressure, and the derivative of pressure increase [dP/dtmax]) and diastolic (minimum rate of pressure rise [dP/dtmin] and left ventricular end-diastolic pressure) variables, whereas these variables remained almost unchanged in the early-mesh group. In the late-mesh group the passive-elastic constraint not only prevented further deterioration but even exerted reverse remodeling to some extent (dP/dtmax and left ventricular end-diastolic pressure, P < .05).ConclusionsVentricular constraint with the new mesh seems to be a prophylactic and therapeutic option in cardiac insufficiency caused by ventricular dilation. This passive-elastic cardioplasty induced reverse remodeling of dilated hearts and significantly improved diastolic and systolic ventricular function

    Plasma amyloid concentration in Alzheimer's disease: performance of a high-throughput amyloid assay in distinguishing Alzheimer's disease cases from controls

    Get PDF
    BACKGROUND: Collection of cerebrospinal fluid (CSF) for measurement of amyloid-β (Aβ) species is a gold standard in Alzheimer's disease (AD) diagnosis, but has risks. Thus, establishing a low-risk blood Aβ test with high AD sensitivity and specificity is of outmost interest. OBJECTIVE: We evaluated the ability of a commercially available plasma Aβ assay to distinguish AD patients from biomarker-healthy controls. METHOD: In a case-control design, we examined plasma samples from 44 AD patients (A + N+) and 49 controls (A-N-) from a memory clinic. AD was diagnosed using a combination of neuropsychological examination, CSF biomarker analysis and brain imaging. Total Aβ40 and total Aβ42 in plasma were measured through enzyme-linked immunosorbent assay (ELISA) technology using ABtest40 and ABtest42 test kits (Araclon Biotech Ltd.). Receiver operating characteristic (ROC) analyses with outcome AD were performed, and sensitivity and specificity were calculated. RESULTS: Plasma Aβ42/40 was weakly positively correlated with CSF Aβ42/40 (Spearman's rho 0.22; p = 0.037). Plasma Aβ42/40 alone was not able to statistically significantly distinguish between AD patients and controls (AUC 0.58; 95% CI 0.46, 0.70). At a cut-point of 0.076 maximizing sensitivity and specificity, plasma Aβ42/40 had a sensitivity of 61.2% and a specificity of 63.6%. CONCLUSION: In this sample, the high-throughput blood Aβ assay was not able to distinguish well between AD patients and controls. Whether or not the assay may be useful in large-scale epidemiological settings remains to be seen

    Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice.

    Get PDF
    Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D(-/-) mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D(-/-) mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D(-/-) mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D(-/-) than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D(-/-) mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse

    Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling

    Get PDF
    INTRODUCTION: Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE‐bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS: Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform–specific functions for sortilin in brain lipid metabolism and AD. RESULTS: Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid‐based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION: We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4

    Dietary spermidine for lowering high blood pressure

    Get PDF
    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular- protective autophagy inducer that can be readily integrated in common diets

    Worry is associated with robust reductions in heart rate variability: a transdiagnostic study of anxiety psychopathology

    Get PDF
    Background Individuals with anxiety disorders display reduced resting-state heart rate variability (HRV), although findings have been contradictory and the role of specific symptoms has been less clear. It is possible that HRV reductions may transcend diagnostic categories, consistent with dimensional-trait models of psychopathology. Here we investigated whether anxiety disorders or symptoms of anxiety, stress, worry and depression are more strongly associated with resting-state HRV. Methods Resting-state HRV was calculated in participants with clinical anxiety (n = 25) and healthy controls (n = 58). Symptom severity measures of worry, anxiety, stress, and depression were also collected from participants, regardless of diagnosis. Results Participants who fulfilled DSM-IV criteria for an anxiety disorder displayed diminished HRV, a difference at trend level significance (p = .1, Hedges’ g = -.37, BF10 = .84). High worriers (Total n = 41; n = 22 diagnosed with an anxiety disorder and n = 19 not meeting criteria for any psychopathology) displayed a robust reduction in resting state HRV relative to low worriers (p = .001, Hedges’ g = -.75, BF10 = 28.16). Conclusions The specific symptom of worry – not the diagnosis of an anxiety disorder – was associated with the most robust reductions in HRV, indicating that HRV may provide a transdiagnostic biomarker of worry. These results enhance understanding of the relationship between the cardiac autonomic nervous system and anxiety psychopathology, providing support for dimensional-trait models consistent with the Research Domain Criteria framework

    Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: Phase 3 study

    Get PDF
    AbstractBackgroundEvaluation of brain β-amyloid by positron emission tomography (PET) imaging can assist in the diagnosis of Alzheimer disease (AD) and other dementias.MethodsOpen-label, nonrandomized, multicenter, phase 3 study to validate the 18F-labeled β-amyloid tracer florbetaben by comparing in vivo PET imaging with post-mortem histopathology.ResultsBrain images and tissue from 74 deceased subjects (of 216 trial participants) were analyzed. Forty-six of 47 neuritic β-amyloid-positive cases were read as PET positive, and 24 of 27 neuritic β-amyloid plaque-negative cases were read as PET negative (sensitivity 97.9% [95% confidence interval or CI 93.8–100%], specificity 88.9% [95% CI 77.0–100%]). In a subgroup, a regional tissue-scan matched analysis was performed. In areas known to strongly accumulate β-amyloid plaques, sensitivity and specificity were 82% to 90%, and 86% to 95%, respectively.ConclusionsFlorbetaben PET shows high sensitivity and specificity for the detection of histopathology-confirmed neuritic β-amyloid plaques and may thus be a valuable adjunct to clinical diagnosis, particularly for the exclusion of AD.Trial registrationClinicalTrials.gov NCT01020838

    Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo

    Get PDF
    Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca2+) concentration is important for astrocytes as Ca2+ surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca2+ activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca2+ activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca2+ dynamics by investigating two distinct EEG states (“synchronized” vs. “de-synchronized” states). We found that astrocytes in L1 had nearly twice higher Ca2+ activity than L2/3. Furthermore, Ca2+ fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca2+ activity. These results suggest that spontaneous astrocytic Ca2+ surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity
    corecore