301 research outputs found

    A portable 3D printer system for the diagnosis and treatment of multidrug-resistant bacteria

    Get PDF
    Summary: Multidrug-resistant bacteria are a major threat to human health, but broad-spectrum antibiotics are losing efficacy. There is a need to screen a given drug against a bacterial infection outside of the laboratory. To address this need, we have designed and built an inexpensive and easy-to-use 3D-printer-based system that allows easily readable quantitative tests for the performance of antibacterial drugs. The platform creates a sterile diagnostic device by using 3D printing, and the device is filled automatically with growth medium, and then antibiotics are sprayed onto the medium by ink-jet technology. The sample for testing can be introduced via a fluid port, and the printer hot bed is used to incubate the device, allowing operation in the field. Combining advantages from various established tests of antibacterial performance, this allows the comparison of a specific antibiotics and bacteria. Also, this system can create and test several antibiotic formulations for therapeutic use, and we demonstrate this potential by investigating a mixture of pathogens that are only killed by a mixture of drugs

    Representing Semantified Biological Assays in the Open Research Knowledge Graph

    Get PDF
    In the biotechnology and biomedical domains, recent text mining efforts advocate for machine-interpretable, and preferably, semantified, documentation formats of laboratory processes. This includes wet-lab protocols, (in)organic materials synthesis reactions, genetic manipulations and procedures for faster computer-mediated analysis and predictions. Herein, we present our work on the representation of semantified bioassays in the Open Research Knowledge Graph (ORKG). In particular, we describe a semantification system work-in-progress to generate, automatically and quickly, the critical semantified bioassay data mass needed to foster a consistent user audience to adopt the ORKG for recording their bioassays and facilitate the organisation of research, according to FAIR principles.Comment: In Proceedings of 'The 22nd International Conference on Asia-Pacific Digital Libraries

    TIN-X:target importance and novelty explorer

    Get PDF
    Abstract Motivation The increasing amount of peer-reviewed manuscripts requires the development of specific mining tools to facilitate the visual exploration of evidence linking diseases and proteins. Results We developed TIN-X, the Target Importance and Novelty eXplorer, to visualize the association between proteins and diseases, based on text mining data processed from scientific literature. In the current implementation, TIN-X supports exploration of data for G-protein coupled receptors, kinases, ion channels, and nuclear receptors. TIN-X supports browsing and navigating across proteins and diseases based on ontology classes, and displays a scatter plot with two proposed new bibliometric statistics: Importance and Novelty. Availability and Implementation http://www.newdrugtargets.org </jats:sec

    CLO: The cell line ontology

    Get PDF
    Abstract Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development.http://deepblue.lib.umich.edu/bitstream/2027.42/109554/1/13326_2013_Article_185.pd

    “A very orderly retreat”: Democratic transition in East Germany, 1989-90

    Get PDF
    East Germany's 1989-90 democratisation is among the best known of East European transitions, but does not lend itself to comparative analysis, due to the singular way in which political reform and democratic consolidation were subsumed by Germany's unification process. Yet aspects of East Germany's democratisation have proved amenable to comparative approaches. This article reviews the comparative literature that refers to East Germany, and finds a schism between those who designate East Germany's transition “regime collapse” and others who contend that it exemplifies “transition through extrication”. It inquires into the merits of each position and finds in favour of the latter. Drawing on primary and secondary literature, as well as archival and interview sources, it portrays a communist elite that was, to a large extent, prepared to adapt to changing circumstances and capable of learning from “reference states” such as Poland. Although East Germany was the Soviet state in which the positions of existing elites were most threatened by democratic transition, here too a surprising number succeeded in maintaining their position while filing across the bridge to market society. A concluding section outlines the alchemy through which their bureaucratic power was transmuted into property and influence in the “new Germany”

    OSCI: standardized stem cell ontology representation and use cases for stem cell investigation

    Full text link
    Abstract Background Stem cells and stem cell lines are widely used in biomedical research. The Cell Ontology (CL) and Cell Line Ontology (CLO) are two community-based OBO Foundry ontologies in the domains of in vivo cells and in vitro cell line cells, respectively. Results To support standardized stem cell investigations, we have developed an Ontology for Stem Cell Investigations (OSCI). OSCI imports stem cell and cell line terms from CL and CLO, and investigation-related terms from existing ontologies. A novel focus of OSCI is its application in representing metadata types associated with various stem cell investigations. We also applied OSCI to systematically categorize experimental variables in an induced pluripotent stem cell line cell study related to bipolar disorder. In addition, we used a semi-automated literature mining approach to identify over 200 stem cell gene markers. The relations between these genes and stem cells are modeled and represented in OSCI. Conclusions OSCI standardizes stem cells found in vivo and in vitro and in various stem cell investigation processes and entities. The presented use cases demonstrate the utility of OSCI in iPSC studies and literature mining related to bipolar disorder.https://deepblue.lib.umich.edu/bitstream/2027.42/148822/1/12859_2019_Article_2723.pd

    Rewiring carotenoid biosynthesis in plants using a viral vector

    Get PDF
    [EN] Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers.We thank Veronica Aragones and M. Rosa Rodriguez-Goberna for excellent technical assistance. This research was supported by Spanish Ministerio de Economia y Competitividad (MINECO) grants BIO2014-54269-R to J.-A.D., and BIO2014-59092-P and BIO2015-71703-REDT to M. R.-C. Financial support from the Generalitat Valenciana (PROMETEOII/2014/021), the Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (Ibercarot 112RT0445), and the Generalitat de Catalunya (2014SGR-1434) is also acknowledged. E.M. is the recipient of a pre-doctoral fellowship (AP2012-3751) from the Spanish Ministerio de Educacion, Cultura y Deporte. B.L. is supported by a postdoctoral fellowship (FPDI-2013-018882) from MINECO.Majer, E.; Llorente, B.; Rodríguez-Concepción, M.; Daros Arnau, JA. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports. 7. https://doi.org/10.1038/srep41645S7O’Connor, S. E. Engineering of secondary metabolism. Annu. Rev. Genet. 49, 71–94 (2015).Sainsbury, F. & Lomonossoff, G. P. Transient expressions of synthetic biology in plants. Curr. Opin. Plant Biol. 19, 1–7 (2014).Gleba, Y. Y., Tusé, D. & Giritch, A. Plant viral vectors for delivery by Agrobacterium. Curr. Top. Microbiol. Immunol. 375, 155–192 (2014).Chen, Q., He, J., Phoolcharoen, W. & Mason, H. S. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum. Vaccin. 7, 331–338 (2011).Pogue, G. P., Lindbo, J. A., Garger, S. J. & Fitzmaurice, W. P. Making an ally from an enemy: plant virology and the new agriculture. Annu. Rev. Phytopathol. 40, 45–74 (2002).Peyret, H. & Lomonossoff, G. P. When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol. J. 13, 1121–1135 (2015).Bedoya, L. C., Martínez, F., Orzáez, D. & Daròs, J. A. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiol. 158, 1130–1138 (2012).Majer, E., Daròs, J. A. & Zwart, M. P. Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 5, 2153–2168 (2013).Bedoya, L., Martínez, F., Rubio, L. & Daròs, J. A. Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. J. Biotechnol. 150, 268–275 (2010).Kelloniemi, J., Mäkinen, K. & Valkonen, J. P. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res. 135, 282–291 (2008).Carrington, J. C., Haldeman, R., Dolja, V. V. & Restrepo-Hartwig, M. A. Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo . J. Virol. 67, 6995–7000 (1993).Li, X. H. & Carrington, J. C. Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc. Natl. Acad. Sci. USA 92, 457–461 (1995).Fraser, P. D. & Bramley, P. M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265 (2004).Meléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A. & Stinco, C. M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 572, 188–200 (2015).Rodríguez-Concepción, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089 (2002).Giuliano, G. Plant carotenoids: genomics meets multi-gene engineering. Curr. Opin. Plant Biol. 19, 111–117 (2014).Cazzonelli, C. I. & Pogson, B. J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 15, 266–274 (2010).Ruiz-Sola, M. A. & Rodríguez-Concepción, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10, e0158 (2012).Nisar, N., Li, L., Lu, S., Khin, N. C. & Pogson, B. J. Carotenoid metabolism in plants. Mol. Plant 8, 68–82 (2015).Misawa, N. et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli . J. Bacteriol. 172, 6704–6712 (1990).Hasunuma, T. et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55, 857–868 (2008).Lu, Y., Rijzaani, H., Karcher, D., Ruf, S. & Bock, R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl. Acad. Sci. USA 110, E623–632 (2013).Mann, V., Harker, M., Pecker, I. & Hirschberg, J. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18, 888–892 (2000).Wurbs, D., Ruf, S. & Bock, R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J. 49, 276–288 (2007).Cordero, M. T. et al. Dicer-like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana . Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-11-16-0239-R (2016).Ye, X. et al. Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000).Ravanello, M. P., Ke, D., Alvarez, J., Huang, B. & Shewmaker, C. K. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab. Eng. 5, 255–263 (2003).Fujisawa, M. et al. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J. Exp. Bot. 60, 1319–1332 (2009).Ohara, K., Ujihara, T., Endo, T., Sato, F. & Yazaki, K. Limonene production in tobacco with Perilla limonene synthase cDNA. J. Exp. Bot. 54, 2635–2642 (2003).Gutensohn, M. et al. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J. 75, 351–363 (2013).Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H. & Misawa, N. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 58, 1112–1114 (1994).Bahieldin, A. et al. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 72, 18–28 (2014).Xie, W., Lv, X., Ye, L., Zhou, P. & Yu, H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab. Eng. 30, 69–78 (2015).Li, Y., Cui, H., Cui, X. & Wang, A. The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 17, 19–24 (2016).Tilsner, J. & Oparka, K. J. Tracking the green invaders: advances in imaging virus infection in plants. Biochem. J. 430, 21–37 (2010).Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679–1683 (1995).Kumagai, M. H., Keller, Y., Bouvier, F., Clary, D. & Camara, B. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana . Plant J. 14, 305–315 (1998).Zhai, S., Xia, X. & He, Z. Carotenoids in staple cereals: metabolism, regulation, and genetic manipulation. Front. Plant Sci. 7, 1197 (2016).Zhang, H. et al. A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods 9, 28 (2013).Nielsen, A. Z. et al. Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth. Biol. 2, 308–315 (2013).Sainsbury, F., Saxena, P., Geisler, K., Osbourn, A. & Lomonossoff, G. P. Using a virus-derived system to manipulate plant natural product biosynthetic pathways. Methods Enzymol. 517, 185–202 (2012).Geisler, K. et al. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc. Natl. Acad. Sci. USA 110, E3360–3367 (2013).Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A. & Brodelius, P. E. Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana . Plant Cell Rep. 31, 1309–1319 (2012).Mozes-Koch, R. et al. Expression of an entire bacterial operon in plants. Plant Physiol. 158, 1883–1892 (2012).Thole, V., Worland, B., Snape, J. W. & Vain, P. The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol. 145, 1211–1219 (2007).Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553 (2009).Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).Cunningham, F. X. Jr., Chamovitz, D., Misawa, N., Gantt, E. & Hirschberg, J. Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of b-carotene. FEBS Lett. 328, 130–138 (1993).Shivprasad, S. et al. Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255, 312–323 (1999).Schürer, H., Lang, K., Schuster, J. & Mörl, M. A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res. 30, e56 (2002).Lu, R. et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699 (2003).Dickmeis, C., Fischer, R. & Commandeur, U. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts. Biotechnol. J. 9, 1369–1379 (2014).Nakagawa, T. et al. Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095–2100 (2007).Bedoya, L. C. & Daròs, J. A. Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Res. 149, 234–240 (2010).Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).Llorente, B. et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 85, 107–119 (2016)

    Aptamers for pharmaceuticals and their application in environmental analytics

    Get PDF
    Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications

    Identification of the remains of King Richard III

    Get PDF
    In 2012, a skeleton was excavated at the presumed site of the Grey Friars friary in Leicester, the last-known resting place of King Richard III. Archaeological, osteological and radiocarbon dating data were consistent with th
    corecore