80 research outputs found

    Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dozens of Traditional Chinese Medicine (TCM) formulas have been used for promotion of "blood production" for centuries, and we are interested in developing novel thrombopoietic medicines from these TCMs. Our previous studies have demonstrated the hematopoietic effects of DangGui BuXue Tong (DBT), a formula composed of <it>Radix Angelicae Sinensis </it>and <it>Radix Astragali </it>in animal and cellular models. As a step further to identify and characterize the active chemical components of DBT, we tested the hematopoietic and particularly, thrombopoietic effects of polysaccharide-enriched fractions from the root of <it>Radix Angelicae Sinensis </it>(APS) in this study.</p> <p>Methods</p> <p>A myelosuppression mouse model was treated with APS (10 mg/kg/day). Peripheral blood cells from APS, thrombopoietin and vehicle-treated samples were then counted at different time-points. Using the colony-forming unit (CFU) assays, we determined the effects of APS on the proliferation and differentiation of hematopoietic stem/progenitor cells and megakaryocytic lineages. Using a megakaryocytic cell line M-07e as model, we analyzed the cellular apoptosis progression with and without APS treatment by Annexin V, Mitochondrial Membrane Potential and Caspase 3 assays. Last, the anti-apoptotic effect of APS on cells treated with Ly294002, a Phosphatidylinositol 3-Kinse inhibitor (PI3K) was also tested.</p> <p>Results</p> <p>In animal models, APS significantly enhanced not only the recovery of platelets, other blood cells and their progenitor cells, but also the formation of Colony Forming Unit (CFU). In M-07e cells, we observed the anti-apoptotic effect of APS. Treatment by Ly294002 alone increased the percentage of cells undergoing apoptosis. However, addition of APS to Ly294002-treated cells significantly reduced the percentage of cells undergoing apoptosis.</p> <p>Conclusions</p> <p>APS promotes hematopoiesis and thrombopoiesis in the mouse model. This effect likely resulted from the anti-apoptosis activity of APS and is likely to involve the PI3K/AKT pathway.</p

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Cerebral blood flow does not mediate the effect of brain temperature on recovery of extracellular potassium ion activity after transient focal ischemia in the rat

    No full text
    Temperature plays an important role in determining outcome following both global and focal brain ischemia. After focal ischemia, the degree of infarction decreases with mild hypothermia and increases with mild hyperthermia. In this study, brain extracellular potassium ion activity and local cerebral blood flow were measured in cerebral cortex during 60 min of middle cerebral artery occlusion and 60 min of re-perfusion. Brain temperature was maintained at 32–34°C (mild hypothermia), 35.5–36.5°C (normothermia), or 37.5–38.5°C (mild hyperthermia) throughout ischemia and re-perfusion. In normothermic animals and to a greater degree in hyperthermic animals, extracellular potassium ion activity showed delayed secondary elevation above pre-ischemia values within 40–60 min after re-perfusion. No secondary elevation of extracellular potassium ion activity was observed in hypothermic animals. There was no difference in cortical blood flow among groups with varying brain temperature, indicating that delayed deterioration of brain potassium ion homeostasis was not caused by temperature dependent alteration of cerebral blood flow. The data suggest that loss of potassium ion homeostasis during re-perfusion after focal cerebral ischemia is caused by cellular rather than vascular dysfunction and may reflect secondary inhibition of energy metabolism

    DataSheet1_The roles for branch shelters and sheep manure to accelerate the restoration of degraded grasslands in northern China.docx

    No full text
    Strategies are desperately needed for restoring the millions of hectares of degraded grasslands which have been simultaneously impacted by overgrazing and Caragana shrub encroachment in arid and semiarid areas of northern China. This study evaluated using different combinations of manure amendments and shrub branch shelters for their impacts on soil moisture, nutrient availability, and plant growth over two growing seasons in a degraded grassland in Ningxia, China. A two-factor experiment was conducted, with three concentrations of 1.2 g m−2, 442 g m−2, and 884 g m−2 native Tan sheep manure as the main plots. Cut caragana (Caragana intermedia) branches were used to create branch shelters covering 0%, 20%, 40%, and 60% of ground area, and these acted as sub-main plots. Soil water storage, soil temperature, manure decomposition, branch decomposition, soil nutrients, and plant growth were monitored for 2 years. Results indicated that soil water storage was significantly increased, and soil temperature decreased, under the 40% and 60% branch shelters. Decomposition rate of manure and shrub branches also increased with increasing soil water availability associated with the higher branch sheltering effects, although soil carbon and nitrogen concentrations were primarily driven by the decomposing manure. The combination of high levels of shrub branch shelter and manure application significantly enhanced plant production, although the bulk of the biomass was concentrated in one species, Artemis scoparia. In conclusion, our study successfully demonstrated feasible and inexpensive solution for the restoration of degraded grasslands, which takes advantage of resources associated with overgrazing Tan sheep and Caragana shrub encroachment in arid and semiarid areas.</p
    corecore