578 research outputs found
Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers
Instituto de Recursos Naturales y Agrobiología, CSIC,
P.O. Box 1052, E-41080, Seville, Spain
E-mail address: [email protected] composition of pitch deposits occurring in pulp sheets and mill circuits during soda/anthraquinone pulping and elemental chlorine-free pulp bleaching of bast fibers of industrial hemp (Cannabis sativa) has been studied. Pitch deposits were extracted with acetone, and the extracts analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Acetone extracts (15-25% of pitch deposits) were constituted by the defoamers used at the mill and by lipophilic extractives from hemp fibers. Acetone-insoluble residues (75-85% of pitch deposits) were analyzed by pyrolysis-GC/MS in the presence and absence of tetramethylammonium hydroxide. These residues were constituted by salts of fatty acids (arising from hemp fibers) with calcium, magnesium, aluminum and other cations that were identified in the deposits. It was concluded that inappropriate use of defoamer together with the presence of multivalent ions seemed to be among the causes of hemp extractives deposition in the pitch problems reported here.This study has been supported by the Spanish Ministerio de Ciencia y Tecnología (MCYT) and FEDER funds (projects 2FD97-0896-C02-02 and AGL2002-00393). A.G. acknowledges a "Ramón y Cajal" contract of the Spanish MCYT. We also thank CELESA (Tortosa, Spain) for providing the samples.Peer reviewe
Existence and asymptotic behavior of solutions for neutral stochastic partial integrodifferential equations with infinite delays
In this work we study the existence, uniqueness and asymptotic behavior of mild solutions for neutral stochastic partial integrodifferential equations with infinite delays. To prove the results, we use the theory of resolvent operators as developed by R. Grimmer [12] R. Grimmer. Resolvent operators for integral equations in a banach space. Transactions of the American Mathematical Society, 273(1): 333-349, 1982, as well as a version of the fixed point principle. We establish sufficient conditions ensuring that the mild solutions are exponentially stable in pth-moment. An example is provided to illustrate the abstract results.Fondo Europeo de Desarrollo RegionalMinisterio de Economía y CompetitividadConsejería de Innovación, Ciencia y Empresa (Junta de Andalucía
Shaping bacterial population behavior through computer-interfaced control of individual cells
This is the final version. Available from Springer Nature via the DOI in this record.Strains and data are available from the authors upon request. Custom scripts for the described setup are available as Supplementary Software.Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.European Union's Seventh Frame ProgrammeAustrian Science FundAgence Nationale de la RechercheAgence Nationale de la RechercheAgence Nationale de la Recherch
Automated Generation of High-Order Modes for Tests of Quasi-Optical Systems of Gyrotrons for W7-X Stellarator
A test system for the verification of the quasi-optical converter system is vital in the gyrotron development. For this reason, an automated measurement setup has been developed and is benchmarked with the TE mode operating in the cavities of the gyrotrons of W7-X with a high purity of about 95 % and a counter-rotating amount of about 0.3 %. The time duration for the mode generator adjustment has been reduced to two days for this mode. After a successful mode excitation, the quasi-optical mode converter, consisting of a launcher and three mirrors, is measured having a vectorial Gaussian mode content of 97 %
Status and First Operation of Gyrotron Teststand FULGOR at KIT
FULGOR, the new KIT gyrotron teststand for megawatt-class gyrotrons, will be presented. Results of initial experiments using a 1.5 MW 140 GHz short pulse pre-prototype gyrotron will be discussed
Optimal control of bioproduction in the presence of population heterogeneity
International audienceCell-to-cell variability, born of stochastic chemical kinetics, persists even in large isogenic populations. In the study of single-cell dynamics this is typically accounted for. However, on the population level this source of heterogeneity is often sidelined to avoid the inevitable complexity it introduces. The homogeneous models used instead are more tractable but risk disagreeing with their heterogeneous counterparts and may thus lead to severely suboptimal control of bioproduction. In this work, we introduce a comprehensive mathematical framework for solving bioproduction optimal control problems in the presence of heterogeneity. We study population-level models in which such heterogeneity is retained, and propose order-reduction approximation techniques. The reduced-order models take forms typical of homogeneous bioproduction models, making them a useful benchmark by which to study the importance of heterogeneity. Moreover, the derivation from the heterogeneous setting sheds light on parameter selection in ways a direct homogeneous outlook cannot, and reveals the source of approximation error. With view to optimally controlling bioproduction in microbial communities, we ask the question: when does optimising the reduced-order models produce strategies that work well in the presence of population heterogeneity? We show that, in some cases, homogeneous approximations provide remarkably accurate surrogate models. Nevertheless, we also demonstrate that this is not uniformly true: overlooking the heterogeneity can lead to significantly suboptimal control strategies. In these cases, the heterogeneous tools and perspective are crucial to optimise bioproduction
Irrigation by Crop in the Continental United States From 2008 to 2020
Agriculture is the largest user of water in the United States. Yet, we do not understand the spatially resolved sources of irrigation water use (IWU) by crop. The goal of this study is to estimate crop-specific IWU from surface water withdrawals (SWW), total groundwater withdrawals (GWW), and nonrenewable groundwater depletion (GWD). To do this, we employ the PCR-GLOBWB 2 global hydrology model to partition irrigation information from the U.S. Geological Survey Water Use Database to specific crops across the Continental United States (CONUS). We incorporate high-resolution input data on agricultural production and climate within the CONUS to obtain crop-specific irrigation estimates for SWW, GWW, and GWD for 20 crops and crop groups from 2008 to 2020 at county spatial resolution. Over the study period, SWW decreased by 20%, while both GWW and GWD increased by 3%. On average, animal feed (alfalfa/hay) uses the most irrigation water across all water sources: 33 from SWW, 13 from GWW, and 10 km3/yr from GWD. Produce used less SWW (43%), but more GWW (57%), and GWD (27%) over the study time-period. The largest changes in IWU for each water source between the years 2008 and 2020 are: rice (SWW decreased by 71%), sugar beets (GWW increased by 232%), and rapeseed (GWD increased by 405%). These results present the first national-scale assessment of irrigation by crop, water source, and year. In total, we contribute nearly 2.5 million data points to the literature (3,142 counties; 13 years; 3 water sources; and 20 crops)
Weak localization and electron-electron interactions in Indium-doped ZnO nanowires
Single crystal ZnO nanowires doped with indium are synthesized via the
laser-assisted chemical vapor deposition method. The conductivity of the
nanowires is measured at low temperatures in magnetic fields both perpendicular
and parallel to the wire axes. A quantitative fit of our data is obtained,
consistent with the theory of a quasi-one-dimensional metallic system with
quantum corrections due to weak localization and electron-electron
interactions. The anisotropy of the magneto-conductivity agrees with theory.
The two quantum corrections are of approximately equal magnitude with
respective temperature dependences of T^-1/3 and T^-1/2. The alternative model
of quasi-two-dimensional surface conductivity is excluded by the absence of
oscillations in the magneto-conductivity in parallel magnetic fields.Comment: 13 pages, Corrected forma
- …