34 research outputs found

    Hydrochemical characterisation of a Major central European heat flux anomaly: the Bürchau geothermal spring system, Southern Black Forest, Germany

    Get PDF
    Background: The possible signature of deep fluids originating from processes occurring during infiltration or circulation in a remote valley in the Black Forest (Germany), a typical infiltration area in the crystalline basement which represents a possible recharge zone of one of the major heat flux density anomalies in central Europe, has been hydrochemically characterised. Chemical and isotopic compositions of two warm springs and several cold springs in Bürchau as well as water from the Badenweiler Spa were sampled three times during June and October 2013. Methods: A number of 70 water samples were taken at natural outlet conditions and analysed for major and trace elements, water H/O-isotope ratios and sulphur isotope ratios of dissolved sulfate. A chlorofluorocarbon (CFC) analysis was conducted to determine the underground residence time of the thermal water. To assess water-rock interactions seven rock samples representing the occurring lithological units of the study area were prepared to thin sections for polarization microscopic analysis. Results: The main spring in Bürchau discharging water with a temperature up to T = 18.1°C at flow rates of approximately 0.2 L s1^{-1} is Na-Ca-HCO3_{3}-dominated and generally low mineralised (total dissolved solids (TDS) of about 150 mg L1^{-1}). Even lower mineralisation and temperature of a nearby spring indicates further dilution with shallow groundwater. With respect to cold springs in the vicinity, the thermal water in Bürchau is slightly enriched in Cl, B, Li, Rb and Cs. In nearby granites, sericitisation of plagioclase and oxidation of pyrite to goethite have been identified. The stable isotope composition of H and O suggests meteoric origin of the water. Chlorofluorocarbon (CFC) analyses indicate that 30% to 40% of the thermal water in Bürchau is younger than 60 to 70 years. Reservoir temperatures have been estimated to 40°C to 80°C using sulphate and quartz geothermometers. Conclusions: Thus, the circulation time of the other 60% to 70% of the thermal water is longer than 70 years. Estimated reservoir temperatures in a range of 40°C to 80°C correspond to an infiltration depth of about 1,600 to 1,800 m

    Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality

    Get PDF
    AG has received support by NordForsk Nordic Trial Alliance (NTA) grant, by Academy of Finland Fellow grant N. 323116 and the Academy of Finland for PREDICT consortium N. 340541. The Richards research group is supported by the Canadian Institutes of Health Research (CIHR) (365825 and 409511), the Lady Davis Institute of the Jewish General Hospital, the Canadian Foundation for Innovation (CFI), the NIH Foundation, Cancer Research UK, Genome Québec, the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS). TN is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists. GBL is supported by a CIHR scholarship and a joint FRQS and Québec Ministry of Health and Social Services scholarship. JBR is supported by an FRQS Clinical Research Scholarship. Support from Calcul Québec and Compute Canada is acknowledged. TwinsUK is funded by the Welcome Trust, the Medical Research Council, the European Union, the National Institute for Health Research-funded BioResource and the Clinical Research Facility and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation Trust in partnership with King’s College London. The Biobanque Québec COVID19 is funded by FRQS, Genome Québec and the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé. These funding agencies had no role in the design, implementation or interpretation of this study. The COVID19-Host(a)ge study received infrastructure support from the DFG Cluster of Excellence 2167 “Precision Medicine in Chronic Inflammation (PMI)” (DFG Grant: “EXC2167”). The COVID19-Host(a)ge study was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). Genotyping in COVID19-Host(a)ge was supported by a philantropic donation from Stein Erik Hagen. The COVID GWAs, Premed COVID-19 study (COVID19-Host(a)ge_3) was supported by "Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"and also by the Instituto de Salud Carlos III (CIBERehd and CIBERER). Funding comes from COVID-19-GWAS, COVID-PREMED initiatives. Both of them are supported by "Consejeria de Salud y Familias" of the Andalusian Government. DMM is currently funded by the the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018). The Columbia University Biobank was supported by Columbia University and the National Center for Advancing Translational Sciences, NIH, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or Columbia University. The SPGRX study was supported by the Consejería de Economía, Conocimiento, Empresas y Universidad #CV20-10150. The GEN-COVID study was funded by: the MIUR grant “Dipartimenti di Eccellenza 2018-2020” to the Department of Medical Biotechnologies University of Siena, Italy; the “Intesa San Paolo 2020 charity fund” dedicated to the project NB/2020/0119; and philanthropic donations to the Department of Medical Biotechnologies, University of Siena for the COVID-19 host genetics research project (D.L n.18 of March 17, 2020). Part of this research project is also funded by Tuscany Region “Bando Ricerca COVID-19 Toscana” grant to the Azienda Ospedaliero Universitaria Senese (CUP I49C20000280002). Authors are grateful to: the CINECA consortium for providing computational resources; the Network for Italian Genomes (NIG) (http://www.nig.cineca.it) for its support; the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/); the Genetic Biobank of Siena, member of BBMRI-IT, Telethon Network of Genetic Biobanks (project no. GTB18001), EuroBioBank, and RD-Connect, for managing specimens. Genetics against coronavirus (GENIUS), Humanitas University (COVID19-Host(a)ge_4) was supported by Ricerca Corrente (Italian Ministry of Health), intramural funding (Fondazione Humanitas per la Ricerca). The generous contribution of Banca Intesa San Paolo and of the Dolce&Gabbana Fashion Firm is gratefully acknowledged. Data acquisition and sample processing was supported by COVID-19 Biobank, Fondazione IRCCS Cà Granda Milano; LV group was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016-02364358, Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, the European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- “Liver Investigation: Testing Marker Utility in Steatohepatitis”, Programme “Photonics” under grant agreement “101016726” for the project “REVEAL: Neuronal microscopy for cell behavioural examination and manipulation”, Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361. DP was supported by Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV). Genetic modifiers for COVID-19 related illness (BeLCovid_1) was supported by the "Fonds Erasme". The Host genetics and immune response in SARS-Cov-2 infection (BelCovid_2) study was supported by grants from Fondation Léon Fredericq and from Fonds de la Recherche Scientifique (FNRS). The INMUNGEN-CoV2 study was funded by the Consejo Superior de Investigaciones Científicas. KUL is supported by the German Research Foundation (LU 1944/3-1) SweCovid is funded by the SciLifeLab/KAW national COVID-19 research program project grant to Michael Hultström (KAW 2020.0182) and the Swedish Research Council to Robert Frithiof (2014-02569 and 2014-07606). HZ is supported by Jeansson Stiftelser, Magnus Bergvalls Stiftelse. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping for the COMRI cohort was performed and funded by the Genotyping Laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki, Helsinki, Finland. These funding agencies had no role in the design, implementation or interpretation of this study.Background: There is considerable variability in COVID-19 outcomes amongst younger adults—and some of this variation may be due to genetic predisposition. We characterized the clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent effect, using individual-level data in a large international multi-centre consortium. Method: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this genetic marker with mortality, COVID-19-related complications and laboratory values. We next examined if the magnitude of these associations varied by age and were independent from known clinical COVID-19 risk factors. Findings: We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2–1·6) and COVID-19 related mortality (HR 1·5, 95%CI 1·3–1·8). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6), venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI 1·2-2·0). Risk allele carriers ≤ 60 years had higher odds of death or severe respiratory failure (OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction p-value=0·04). Amongst individuals ≤ 60 years who died or experienced severe respiratory COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers, compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes. Prediction of death or severe respiratory failure among those ≤ 60 years improved when including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770 risk allele was similar to, or better than, most established clinical risk factors. Interpretation: The major common COVID-19 risk locus on chromosome 3 is associated with increased risks of morbidity and mortality—and these are more pronounced amongst individuals ≤ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk factors, suggesting potential implications for clinical risk management.Academy of Finland Fellow grant N. 323116Academy of Finland for PREDICT consortium N. 340541.Canadian Institutes of Health Research (CIHR) (365825 and 409511)Lady Davis Institute of the Jewish General HospitalCanadian Foundation for Innovation (CFI)NIH FoundationCancer Research UKGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS)Japan Society for the Promotion of Science for Young ScientistsCIHR scholarship and a joint FRQS and Québec Ministry of Health and Social Services scholarshipFRQS Clinical Research ScholarshipCalcul QuébecCompute CanadaWelcome TrustMedical Research CouncEuropean UnionNational Institute for Health Research-funded BioResourceClinical Research Facility and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation TrustKing’s College LondonGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in Infection and ImmunityFonds de Recherche Québec Santé(DFG Grant: “EXC2167”)(CompLS grant 031L0165)Stein Erik Hagen"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"Instituto de Salud Carlos III (CIBERehd and CIBERER)COVID-19-GWASCOVID-PREMED initiatives"Consejeria de Salud y Familias" of the Andalusian GovernmentAndalusian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018)Columbia UniversityNational Center for Advancing Translational SciencesNIH Grant Number UL1TR001873Consejería de Economía, Conocimiento, Empresas y Universidad #CV20-10150MIUR grant “Dipartimenti di Eccellenza 2018-2020”“Intesa San Paolo 2020 charity fund” dedicated to the project NB/2020/0119Tuscany Region “Bando Ricerca COVID-19 Toscana”CINECA consortiumNetwork for Italian Genomes (NIG)COVID-19 Host Genetics InitiativeGenetic Biobank of SienaEuroBioBankRD-ConnectRicerca Corrente (Italian Ministry of Health)Fondazione Humanitas per la RicercaBanca Intesa San PaoloDolce&Gabbana Fashion FirmCOVID-19 BiobankFondazione IRCCS Cà Granda MilanoMyFirst Grant AIRC n.16888Ricerca Finalizzata Ministero della Salute RF-2016-02364358Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoEuropean Union (EU) Programme Horizon 2020 (under grant agreement No. 777377)“Photonics” “101016726”Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV)"Fonds Erasme"Fondation Léon FredericqFonds de la Recherche Scientifique (FNRS)Consejo Superior de Investigaciones CientíficasGerman Research Foundation (LU 1944/3-1)SciLifeLab/KAW national COVID-19 research program project (KAW 2020.0182)Swedish Research Council (2014-02569 and 2014-07606)Jeansson Stiftelser, Magnus Bergvalls StiftelseTechnical University of Munich, Munich, GermanyGenotyping Laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki, Helsinki, Finlan

    The Churches' Bans on Consanguineous Marriages, Kin-Networks and Democracy

    Full text link

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Financial viability of soil and water conservation technologies in northwestern Ethiopian highlands

    No full text
    Soil erosion by water is a major threat to food security, environmental sustainability and prospects for rural development in Ethiopia. Successive governments have promoted various soil and water conservation (SWC) measures in order to reduce the effects of land degradation, but adoption rates vary considerably. The profitability of SWC measures is an essential condition for their adoption. The objective of this research was to determine the economic efficiency of three different types of SWC technologies (soil bunds, stone bunds and fanya juu) in the watersheds of Debre Mewi and Anjeni in the northwestern Ethiopian highlands. A farm household survey was carried out among 60 farmers in both watersheds and the Universal Soil Loss Equation (USLE) was used to assess erosion risk on farmers' fields. A cost-benefit analysis (CBA) was then carried out to determine the profitability of the measures under different conditions. Erosion estimates for the fields suggest that adapted SWC structures were successful in reducing soil erosion. The cost-benefit analysis indicates that all SWC measures are profitable under ‘standard’ conditions, except soil bunds in Anjeni without grass cover. However, the study shows that different underlying assumptions change the CBA results considerably and consequently also change the conclusions regarding circumstances under which SWC measures are or are not profitable. This illustrates the volatility of the profitability of SWC measures

    Youth participation in policy-making processes in the United Kingdom: a scoping review of the literature

    No full text
    Young people’s voices remain underrepresented in health policy processes. This scoping review focuses on the United Kingdom (UK) and investigates how and to what degree young people have participated in policy-making processes. We adapt an established framework categorizing how young people are involved in policy-related processes, ranging from advisory roles to communicating findings. We report a spectrum of practical examples, highlighting opportunities for successful policymaking with youth, in relation to key factors, such as type of involvement, role of facilitators, and the integration of young people in different stages of the process
    corecore