7,736 research outputs found

    Crude Oil and Stock Markets: Stability, Instability, and Bubbles

    Get PDF
    We analyze the long-run relationship between the world price of crude oil and international stock markets over 1971:1-2008:3 using a cointegrated vector error correction model with additional regressors. Allowing for endogenously identified breaks in the cointegrating and error correction matrices, we find evidence for breaks after 1980:5, 1988:1, and 1999:9. We find a clear long-run relationship between these series for six OECD countries for 1971:1-1980.5 and 1988:2-1999.9, suggesting that stock market indices respond negatively to increases in the oil price in the long run. During 1980.6-1988.1, we find relationships that are not statistically significantly different from either zero or from the relationships of the previous period. The expected negative long-run relationship appears to disintegrate after 1999.9. This finding supports a conjecture of change in the relationship between real oil price and real stock prices in the last decade compared to earlier years, which may suggest the presence of several stock market bubbles and/or oil price bubbles since the turn of the century.crude oil, stock market prices, cointegrated VECM, structural stability, stock market bubble, oil price bubble

    The problem of repulsive quark interactions - Lattice versus mean field models

    Full text link
    We calculate the 2nd and 4th order quark number susceptibilities at zero baryochemical potential, using a PNJL approach and an approach which includes, in a single model, quark and hadronic degrees of freedom. We observe that the susceptibilities are very sensitive to possible quark-quark vector interactions. Compared to lattice data our results suggest that above TcT_c any mean field type of repulsive vector interaction can be excluded from model calculations. Below TcT_c our results show only very weak sensitivity on the strength of the quark and hadronic vector interaction. The best description of lattice data around TcT_c is obtained for a case of coexistence of hadronic and quark degrees of freedom.Comment: 5 pages, 4 figure, version accepted by PL

    A PNJL model in 0+1 Dimensions

    Full text link
    We formulate the Polyakov-Nambu-Jona-Lasinio (PNJL) model in 0+1 dimensions. The thermodynamics captured by the partition function yields a bulk pressure, as well as quark susceptibilities versus temperature that are similar to the ones in 3+1 dimensions. Around the transition temperature the behavior in the pressure and quark susceptibilities follows from the interplay between the lowest Matsubara frequency and the Polyakov line. The reduction to the lowest Matsubara frequency yields a matrix Model. In the presence of the Polyakov line the UV part of the Dirac spectrum features oscillations when close to the transition temperature.Comment: 18 pages, 13 figure

    Mol-CycleGAN - a generative model for molecular optimization

    Get PDF
    Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To augment the compound design process we introduce Mol-CycleGAN - a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results

    The QCD phase diagram from analytic continuation

    Get PDF
    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB300\mu_B\approx 300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=N_t= 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021\kappa = 0.0149 \pm 0.0021.Comment: 14 pages, 4 figures, revised versio

    The QCD equation of state at finite density from analytical continuation

    Get PDF
    We determine the equation of state of QCD at finite chemical potential, to order (μB/T)6(\mu_B/T)^6, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to Nt=16N_t=16 temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the (T, μB)(T,~\mu_B) plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around μB=0\mu_B=0 from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.Comment: 5 pages, 4 figure

    Towards the QCD phase diagram from analytical continuation

    Full text link
    We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to Nt=16N_t=16. The simulation parameters are tuned such that the strangeness neutrality is maintained, as it is in heavy ion collisions.Comment: 4 pages, 2 figures, Proceedings of the Quark Matter 2015 conference, Kobe, Japa
    corecore