425 research outputs found

    Abstract P4-04-16: Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production

    Get PDF
    Obesity is associated with a worse breast cancer prognosis, particularly in estrogen receptor alpha (ERα) positive, postmenopausal patients. We hypothesized that this is mediated in part by an elevation in breast cancer cell cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production that results in greater local pre-adipocyte aromatase expression. We utilized an in vitro model of the obese patient's tumor microenvironment in which cultured MCF-7 breast cancer cells and pre-adipocytes were exposed to pooled serum from obese (OB; BMI ≥ 30.0 kg/m2) or normal weight (N; BMI 18.5–24.9 kg/m2) postmenopausal women. Exposure to OB versus N sera significantly increased MCF-7 cell COX-2 expression and PGE2 production. Pre-adipocyte aromatase expression was 89 % greater following culture in conditioned media (CM) from MCF-7 cells exposed to OB versus N sera (OB-CM and N-CM, respectively), a difference nullified by MCF-7 cell treatment with the COX-2 inhibitor celecoxib. Previous analysis of the sera revealed significantly higher interleukin-6 (IL-6) concentrations in the OB versus N samples. Depletion of IL-6 from the sera neutralized the difference in pre-adipocyte aromatase expression stimulated by OB-CM versus N-CM. Finally, CM from pre-adipocyte/MCF-7 cell co-cultures exposed to OB sera stimulated greater MCF-7 and T47D breast cancer cell ERα activity and proliferation in comparison to N sera. This study indicates that obesity-associated systemic IL-6 indirectly enhances pre-adipocyte aromatase expression via increased breast cancer cell PGE2 production. Investigation regarding the efficacy of a COX-2 inhibitor/aromatase inhibitor combination therapy in the obese postmenopausal patient population is warranted

    Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study

    Get PDF
    Background & AimsIn acute liver failure, severity of liver injury and clinical progression of disease are in part consequent upon activation of the innate immune system. Endotoxaemia contributes to innate immune system activation and the detoxifying function of albumin, critical to recovery from liver injury, is irreversibly destroyed in acute liver failure. University College London-Liver Dialysis Device is a novel artificial extracorporeal liver assist device, which is used with albumin infusion, to achieve removal and replacement of dysfunctional albumin and reduction in endotoxaemia. We aimed to test the effect of this device on survival in a pig model of acetaminophen-induced acute liver failure.MethodsPigs were randomised to three groups: Acetaminophen plus University College London-Liver Dialysis Device (n=9); Acetaminophen plus Control Device (n=7); and Control plus Control Device (n=4). Device treatment was initiated two h after onset of irreversible acute liver failure.ResultsThe Liver Dialysis Device resulted in 67% reduced risk of death in acetaminophen-induced acute liver failure compared to Control Device (hazard ratio=0.33, p=0.0439). This was associated with 27% decrease in circulating irreversibly oxidised human non-mercaptalbumin-2 throughout treatment (p=0.046); 54% reduction in overall severity of endotoxaemia (p=0.024); delay in development of vasoplegia and acute lung injury; and delay in systemic activation of the TLR4 signalling pathway. Liver Dialysis Device-associated adverse clinical effects were not seen.ConclusionsThe survival benefit and lack of adverse effects would support clinical trials of University College London-Liver Dialysis Device in acute liver failure patients

    Selective inhibitors of the PSEN1-gamma-secretase complex

    Get PDF
    Clinical development of Y-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer’s disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific Y-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1–APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different Y-secretase complexes might provide safer drugs in the future.The work was supported by an AIO-project (no. HBC.2016.0884). This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. ERC-834682 CELLPHASE_AD). This work was supported by the Flanders Institute for Biotechnology (VIB vzw), a Methusalem grant from KU Leuven and the Flemish Government, the Fonds voor Wetenschappelijk Onderzoek, KU Leuven, The Queen Elisabeth Medical Foundation for Neurosciences, the Opening the Future campaign of the Leuven Universitair Fonds, the Belgian Alzheimer Research Foundation (SAO-FRA), and the Alzheimer’s Association USA.Peer ReviewedPostprint (published version

    Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure

    Get PDF
    Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)

    Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway

    Get PDF
    Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ≥30 kg/m2; normal weight (N): 18.5–24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease

    Phytoplankton assemblage and UV-protective compounds in the river Ganges

    Get PDF
    Interactions between physico-chemical parameters such as pH, temperature, nitrate, phosphate, alkalinity, acidity, biological oxygen demand (BOD), chemical oxygen demand (COD) and solar ultraviolet radiation (UVR) strongly affect aquatic ecosystems. Due to fluctuations in several environmental factors including river water pollution and UVR, organisms are under constant threat. However, phytoplankton protects themselves from environmental extremes by adopting several defense strategies including synthesis of photoprotective compounds such as scytonemin and mycosporine-like amino acids (MAAs).We investigated the presence of scytonemin and MAAs in phytoplankton of some polluted sites of one of the holy rivers of the world, the Ganges at Varanasi, India. We observed phytoplankton assemblages and studied certain environmental parameters which could possibly affect phytoplankton diversity in the river. Phytoplankton consisted mainly of 49 taxa of 34 genera belonging to Bacillariophyceae, Chlorophyceae, Cyanophyceae, and Chrysophyceae. The members belonging to Bacillariophyceae and Chlorophyceae were the two dominant classes, which comprised up to 75% of the total phytoplankton.Photoprotective compounds were isolated and characterized from phytoplankton. Electrospray ionization-mass spectrometry (ESI-MS) analysis of MAAs showed the presence of shinorine, palythinol, mycosporine-glycine and palythine. A high concentration of scytonemin was also observed with an absorption maximum at 386 nm in the studied phytoplankton

    Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals

    Get PDF
    © 2016 The Authors This paper describes the suitability of the Microbial Fuel Cell (MFC) for generation of electrical power with a simultaneous synthesis of active catholyte in the form of caustic solution. The active solution formed inside a terracotta based MFC reactor was a product of self-powered wastewater electrolysis utilizing i) wastewater with added sodium acetate as a carbon source and ii) neat urine. The catholyte solution that has been actively synthesized was harvested and used for precipitation of heavy metals such as: iron, copper and zinc showing its suitability for use in electro-coagulation (electro-flocculation). This proposed alternative approach to self-powered electrocoagulation is based on electrochemically formed caustic catholyte within the inner cathode chamber of the MFC and then used ex situ to form metal hydroxides that precipitate out from heavy metal solutions
    • …
    corecore