52 research outputs found

    DEVELOPING A GUI IN MATLAB FOR SIMULATION REFRACTION PHENOMENON BY FDTD

    Get PDF
    El método de diferencias finitas en el dominio del tiempo (FDTD) ha demostrado ser una herramienta útil para el análisis de los fenómenos electromagnéticos. En este trabajo se presenta una aplicación grafica basada en la GUIDE de MATLAB, en la cual se muestra la implementación del algoritmo de diferencias finitas en el dominio del tiempo, para la simulación del fenómeno de refracción. Se introducirán unas condiciones de frontera absorbentes (ABC) de tipo capas perfectamente acopladas (PML), ya que este es un problema de evolución temporal con dominios no acotados. The finite difference time-domain (FDTD) has proved a useful tool for the analysis of electromagnetic phenomena. This paper presents a graphical application based on MATLAB GUIDE, in which the implementation of the finite difference algorithm is shown in the time domain, to simulate the phenomenon of refraction is presented. Absorbing boundary conditions (ABC) type of perfectly matched layers (PML) will be introduced, as this is a problem of time evolution with unbounded domains

    Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei

    Get PDF
    Background: At present, available pneumococcal vaccines have failed to eradicate infections caused by S. pneumoniae. Search for effective vaccine continues and some serotype independent pneumococcal proteins are considered as candidates for the design of new vaccines, especially a mucosal vaccine, since pneumococci enter the body through mucosal surfaces. Selection of the appropriate adjuvant is important for mucosal vaccines, and lactic acid bacteria (LAB) with immunostimulant properties are promissory candidates. In this work, we assessed the adjuvant effect of a probiotic strain, Lactobacillus casei (L. casei), when nasally administered with a pneumococcal antigen (pneumococcal protective protein A: PppA) for the prevention of pneumococcal infection. Adjuvanticity of both live (LcV) and heat-killed (LcM) was evaluated and humoral and cellular antigen-specific immune response was assessed in mucosal and systemic compartments. The potential mechanisms induced by nasal immunization were discussed.Results: Nasal immunization of young mice with PppA+LcV and PppA+LcM induced anti-PppA IgA and IgG antibodies in mucosal and systemic compartments and levels of these specific antibodies remained high even at day 45 after the 3rd Immunization (3rd I). These results were correlated with IL-4 induction by the mixture of antigen plus LcV and LcM. Also, PppA+Lc (V and M) induced stimulation of Th1 and Th17 cells involved in the defence against pneumococci. The protection against pneumococcal respiratory challenge at day 30 after the 3rd I showed that PppA+LcV and PppA+LcM immunizations significantly reduced pathogen counts in nasal lavages while prventing their passage into lung and blood. Survival of mice immunized with the co-application of PppA plus LcV and LcM was significantly higher than in mice immunized with PppA alone and control mice when intraperitoneal challenge was performed. No significant differences between the treatments involving LcV and LcM were found.Conclusions: Live and heat-killed L. casei enhanced the antigen-specific immune response when administered nasally with a pneumococcal antigen. Considering the potential risk associated with live bacteria, the design of a nasal vaccine based on pneumococcal antigens and heat-killed L. casei emerges as a safe and effective strategy for the prevention of pneumococcal infections and opens new possibilities of application of dead LAB as adjuvants in vaccine formulations against other pathogens.Fil: Vintiñi, Elisa Ofelia. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Medina, Marcela Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentin

    Proteomics-Based Systems Biology Modeling of Bovine Germinal Vesicle Stage Oocyte and Cumulus Cell Interaction

    Get PDF
    BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level

    Genetic drivers of kidney defects in the digeorge syndrome

    Get PDF
    BACKGROUND The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P = 4.5×1014). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-Altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Respuesta Fotoluminiscente observada en muestras de InP y GaAs no dopadas y dopadas Cr y S

    No full text
    In this work semiconductor sample of GaAs and InP doped and non-doped with a fast-mapping equipment by photoluminescence at room temperature. The samples were gown by the LEC technique,with the photo luminescent technique the images were obtained and line spectrum to analyze characterization parameters such as:wavelength and intensity of the maximum, wide spectral in the middle of the maximum height (FWHM) and the integrated signal for all the samples. The spectrum of the not dope GaAs showed 2 peaks around 1,426 eV and another in 1,36 eV, which corresponds to superficial defect originated by the oxidation process of itself. The spectrum of the GaAs:Cr showed us a peak around 1,437, it did not present any defect zone when treated chemicallydue to the presence of the Cr en el GaAs that originates an acceptor deep level located in 0,63 eV and under the conduction band. The spectrum of the InP:S showed a peak around the 1,375 eV and when it was treated chemically showed 2 peaks: 1,380eV with acetone and 1,392 eV with sulfuric acid.These peaks show us the crystalline quality that these semiconductor samples present, allowing the manufacture of optoelectronic devices such as: lasers, microchips and detectors.En este trabajo se analizaron muestras semiconductoras de GaAs y InP dopadas y no dopadas con un equipo de mapeamiento rápido por fotoluminiscencia a temperatura ambiente. Las muestras fueron crecidas por la técnica LEC, con la técnica fotoluminiscente se obtuvieron imágenes y espectros de línea, para analizar los parámetros: longitud de onda del pico máximo, intensidad del pico máximo, el ancho espectral a la mitad de la altura máxima (FWHM) y la señal integrada para todas las muestras. El espectro del GaAs no dopado mostró dos picos alrededor de 1,426 eV y otro en 1,36 eV, el cual corresponde a un defecto superficial originado por el proceso oxidación de la misma. El espectro del GaAs:Cr muestra un pico alrededor de 1,437 eV, no presento zona de defectos al ser tratado químicamente, debido a la presencia del Cr en el GaAs que origina un nivel aceptor profundo situado en 0,63 eV por debajo de la banda de conducción. El espectro del InP:S presento un pico alrededor de 1,375 eV y cuando fue tratado químicamente reflejo dos picos: con acetona de 1,380 eV y ácido sulfúrico de 1,392 eV
    corecore