423 research outputs found

    Stratospheric Data Analysis System (STRATAN)

    Get PDF
    A state of the art stratospheric analyses using a coupled stratosphere/troposphere data assimilation system is produced. These analyses can be applied to stratospheric studies of all types. Of importance to this effort is the application of the Stratospheric Data Analysis System (STRATAN) to constituent transport and chemistry problems

    An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery

    Get PDF
    AbstractMeasurement of systolic wall thickening by sonomicrometry provides an accurate index of regional left ventricular function, but the trauma of crystal insertion limits its widespread clinical use. The first clinical application of a 10 MHz ultrasonic Doppler probe that can be either sutured or applied by suction to the epicardium and can measure wall thickening at any depth of the left ventricular wall is described. In 18 dogs, measurements obtained with the suction probe correlated well (r = 0.97) with those of a previously validated sutured probe.To assess clinical feasibility, the probe was applied to the epicardium of patients undergoing coronary bypass surgery. Good quality wall thickening signals were obtained with no complications. Transmural left ventricular thickening fraction before bypass surgery was 34 ± 3% (mean value ± SE) at the mid-ventricular lateral wall, 33 ± 4% at the anterior basal wall and 26 ± 4% at the mid-ventricular posterior wall. Right ventricular thickening fraction averaged 25 ± 3%. Endocardial thickening fraction tended to exceed epicardial thickening fraction, although the difference attained statistical significance (p < 0.05) only at the anterior basal wall.On average, thickening fraction during the immediate postoperative period remained unchanged compared with the preoperutive values, but a marked individual variability was observed, with 7 of 15 patients exhibiting a decrease and 8 an increase. Exteriorization of the wires attached to the sutured probe allowed continuous in situ monitoring of wall thickening in the postoperative period and subsequent removal of the probe, in six patients the crystal was left in place for 48 to 72 h after surgery and then removed without complications; good wall thickening signals were obtained for the entire period during which the probe was implanted.Thus, the Doppler probe is an accurate, atraumatic method for measuring right and left ventricular regional function. Transmural, endocardial and epicardial function can be mapped at various sites during surgery, and postoperatively one can monitor serial changes of regional function and assess the effects of cardioplegia and other therapeutic interventions. This technique should be useful for both investigative and clinical purposes

    Dark homogeneous streak dermoscopic pattern correlating with specific KIT mutations in melanoma

    Get PDF
    Mutations driving melanoma growth have diagnostic, prognostic, and therapeutic implications. Traditional classification systems do not correlate optimally with underlying melanoma growth-promoting mutations. Our objective was to determine whether unique dermoscopic growth patterns directly correlate with driving mutations. OBSERVATIONS: We evaluated common driving mutations in 4 different dermoscopic patterns (rhomboidal, negative pigmented network, polygonal, and dark homogeneous streaks) of primary cutaneous melanomas; 3 melanomas per pattern were tested. Three of the 4 patterns lacked common mutations in BRAF, NRAS, KIT, GNAQ, and HRAS. One pattern, the dark homogeneous streaks pattern, had unique KIT mutations in the second catalytic domain of KIT in exon 17 for all 3 samples tested. Two tumors with the dark homogeneous streaks pattern turned out to be different primary melanomas from the same patient and had different sequence mutations but had an impact on the same KIT domain. CONCLUSIONS AND RELEVANCE: While future study is required, these results have multiple implications. (1) The underlying melanoma-driving mutations may give rise to specific dermoscopic growth patterns, (2) BRAF/NRAS mutations in early melanomas may not be as common as previously thought, and (3) patients may be predisposed to developing specific driving mutations giving rise to melanomas or nevi of similar growth patterns

    Numerical wave propagation on the hexagonal C-grid

    Get PDF
    Copyright © 2008 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics, Vol. 227, Issue 11 (2008), DOI: 10.1016/j.jcp.2008.02.010Inertio-gravity mode and Rossby mode dispersion properties are examined for discretizations of the linearized rotating shallow water equations on a regular hexagonal C-grid in planar geometry. It is shown that spurious non-zero Rossby mode frequencies found by previous authors in the f-plane case can be avoided by an appropriate discretization of the Coriolis terms. Three generalizations of this discretization that conserve energy even for non-constant Coriolis parameter are presented. A quasigeostrophic ÎČÎČ-plane analysis is carried out to investigate the Rossby mode dispersion properties of these three schemes. The Rossby mode dispersion relation is found to have two branches. The primary branch modes are good approximations, in terms of both structure and frequency, to corresponding modes of the continuous governing equations, and offer some improvements over a quadrilateral C-grid scheme. The secondary branch modes have vorticity structures approximating those of small-scale modes of the continuous governing equations, suggesting that the hexagonal C-grid might have an advantage in terms of resolving extra Rossby modes; however, the frequencies of the secondary branch Rossby modes are much smaller than those of the corresponding continuous modes, so this potential advantage is not fully realized

    Checking bounded reachability in asynchronous systems by symbolic event tracing

    Get PDF
    This report presents a new symbolic technique for checking reachability properties of asynchronous systems by reducing the problem to satisfiability in restrained difference logic. The analysis is bounded by fixing a finite set of potential events, each of which may occur at most once in any order. The events are specified using high-level Petri nets. The logic encoding describes the space of possible causal links between events rather than possible sequences of states as in Bounded Model Checking. Independence between events is exploited intrinsically without partial order reductions, and the handling of data is symbolic. On a family of benchmarks, the proposed approach is consistently faster than Bounded Model Checking. In addition, this report presents a compact encoding of the restrained subset of difference logic in propositional logic

    A Comparison of Two Shallow Water Models with Non-Conforming Adaptive Grids: classical tests

    Get PDF
    In an effort to study the applicability of adaptive mesh refinement (AMR) techniques to atmospheric models an interpolation-based spectral element shallow water model on a cubed-sphere grid is compared to a block-structured finite volume method in latitude-longitude geometry. Both models utilize a non-conforming adaptation approach which doubles the resolution at fine-coarse mesh interfaces. The underlying AMR libraries are quad-tree based and ensure that neighboring regions can only differ by one refinement level. The models are compared via selected test cases from a standard test suite for the shallow water equations. They include the advection of a cosine bell, a steady-state geostrophic flow, a flow over an idealized mountain and a Rossby-Haurwitz wave. Both static and dynamics adaptations are evaluated which reveal the strengths and weaknesses of the AMR techniques. Overall, the AMR simulations show that both models successfully place static and dynamic adaptations in local regions without requiring a fine grid in the global domain. The adaptive grids reliably track features of interests without visible distortions or noise at mesh interfaces. Simple threshold adaptation criteria for the geopotential height and the relative vorticity are assessed.Comment: 25 pages, 11 figures, preprin

    Analysis of Globule Types in Malignant Melanoma

    Get PDF
    Objective: To identify and analyze subtypes of globules based on size, shape, network connectedness, pigmentation, and distribution to determine which globule types and globule distributions are most frequently associated with a diagnosis of malignant melanoma. Design: Retrospective case series of dermoscopy images with globules. Setting: Private dermatology practices. Participants: Patients in dermatology practices. Intervention: Observation only. Main Outcome Measure: Association of globule types with malignant melanoma. Results: The presence of large globules (odds ratio [OR], 5.25) and globules varying in size (4.72) or shape (5.37) had the highest ORs for malignant melanoma among all globule types and combinations studied. Classical globules (dark, discrete, convex, and 0.10-0.20 mm) had a higher risk (OR, 4.20) than irregularly shaped globules (dark, discrete, and not generally convex) (2.89). Globules connected to other structures were not significant in the diagnosis of malignant melanoma. Of the different configurations studied, asymmetric clusters have the highest risk (OR, 3.02). Conclusions: The presence of globules of varying size or shape seems to be more associated with a diagnosis of malignant melanoma than any other globule type or distribution in this study. Large globules are of particular importance in the diagnosis of malignant melanoma
    • 

    corecore