30 research outputs found

    Flagships and tumbleweed: A history of the politics of gender justice work in Oxfam GB 1986–2015

    Get PDF
    This article contributes to scholarship on the political nature of feminists’ work in international development NGOs. The case study of Oxfam GB (OGB) is contemporary history, based on compiling a brief history of gender justice work between 1986 and 2014 and 18 months of part-time participant-observation fieldwork during 2014–15. I describe funding pressures and imperatives, contestations of meaning and power struggles within OGB and argue that gender justice becomes entangled in both internal and the external politics of international development. This is part of a wider research programme about how ideas on gender equality norms travel between and around development organizations, so I finally draw conclusions about how norms are contested and embodied. The shapeshifting political nature of feminist work challenges prevailing theories about how norms and ideas travel and take hold within organizations

    Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    Get PDF
    Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions: The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference

    Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ring species, exemplified by salamanders of the <it>Ensatina eschscholtzii </it>complex, represent a special window into the speciation process because they allow the history of species formation to be traced back in time through the geographically differentiated forms connecting the two terminal forms of the ring. Of particular interest is the nature and extent of reproductive isolation between the geographically terminal forms, in this case <it>E. e. eschscholtzii </it>and <it>E. e. klauberi</it>. Previous studies have documented infrequent hybridization at the end of the ring. Here, we report the first fine-scale genetic analysis of a hybrid zone between the terminal forms in southern California using individual-based Bayesian analyses of multilocus genetic data to estimate levels and direction of hybridization and maximum-likelihood analysis of linkage disequilibrium and cline shape to make inferences about migration and selection in the hybrid zone.</p> <p>Results</p> <p>The center of the hybrid zone has a high proportion of hybrids, about half of which were classified as F1s. Clines are narrow with respect to dispersal, and there are significant deviations from Hardy-Weinberg equilibrium as well as nonrandom associations (linkage disequilibria) between alleles characteristic of each parental type. There is cytonuclear discordance, both in terms of introgression and the geographic position of mitochondrial versus nuclear clines. Genetic disequilibrium is concentrated on the <it>eschscholtzii </it>side of the zone. Nearly all hybrids possess <it>klauberi </it>mtDNA, indicating that most hybrids are formed from female <it>klauberi </it>mating with male <it>eschscholtzii </it>or male hybrids (but not vice versa).</p> <p>Conclusions</p> <p>Our results are consistent with a tension zone trapped at an ecotone, with gene combinations characteristic of <it>klauberi </it>showing up on the <it>eschscholtzii </it>side of the zone due to asymmetric hybridization. We suggest that the observed asymmetry is best explained by increased discriminatory power of <it>eschscholtzii </it>females, or asymmetric postzygotic isolation. The relatively high frequency of hybrids, particularly F1s, contrasts with other contacts between the terminal forms, and with other contacts between other divergent <it>Ensatina </it>lineages, highlighting the diverse outcomes of secondary contact within a single species complex.</p

    Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres). In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus <it>Mus </it>which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres.</p> <p>Results</p> <p>The chromosomal distribution of rDNA clusters was determined by <it>in situ </it>hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus <it>Mus</it>: i) rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii) a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii) 24% of the observed breakpoints mapped near an rDNA cluster, and iv) a substantial rate of rDNA cluster change (insertion, deletion) also occurred in the absence of chromosomal rearrangements.</p> <p>Conclusions</p> <p>This study on the dynamics of rDNA clusters within the genus <it>Mus </it>has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus <it>Mus</it>, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome repatterning observed in this group. However, the elevated rate of rDNA change observed in the chromosomally invariant clade indicates that the presence of these sequences is insufficient to lead to genome instability. In agreement with recent studies, these results suggest that additional factors such as modifications of the epigenetic state of DNA may be required to trigger evolutionary plasticity.</p

    Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing

    No full text
    The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild-derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units – OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory-kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical researc

    Murine cytomegalovirus is not restricted to the house mouse mus musculus domesticus : prevalence and genetic diversity in the European house mouse hybrid zone

    No full text
    Murine cytomegalovirus (MCMV) is a betaherpesvirus of the house mouse, Mus musculus domesticus. It is a common infectious agent of wild mice and a highly studied pathogen of the laboratory mouse. Betaherpesviruses are specific to their hosts, and it is not known if other Mus taxa carry MCMV or if it is restricted to M. m. domesticus. We sampled mice over a 145-km transect of Bavaria-Bohemia crossing a hybrid zone between M. m. domesticus and Mus musculus musculus in order to investigate the occurrence of MCMV in two Mus subspecies and to test the limits of the specificity of the virus for its host. We hypothesized that if the two subspecies carry MCMV and if the virus is highly specific to its host, divergent MCMV lineages would have codiverged with their hosts and would have a geographical distribution constrained by the host genetic background. A total of 520 mice were tested by enzyme-linked immunosorbent assay (ELISA) and/or nested PCR targeting the M94 gene. Seropositive and PCR-positive individuals were found in both Mus subspecies. Seroprevalence was high, at 79.4%, but viral DNA was detected in only 41.7% of mice. Sequencing revealed 20 haplotypes clustering in 3 clades that match the host genetic structure in the hybrid zone, showing 1 and 2 MCMV lineages in M. m. domesticus and M. m. musculus, respectively. The estimated time to the most recent common ancestor (1.1 million years ago [Mya]) of the MCMVs matches that of their hosts. In conclusion, MCMV has coevolved with these hosts, suggesting that its diversity in nature may be underappreciated, since other members of the subgenus Mus likely carry different MCMVs. IMPORTANCE Murine cytomegalovirus (MCMV) is a betaherpesvirus of the house mouse, Mus musculus domesticus, an important lab model for human cytomegalovirus (HCMV) infection. The majority of lab studies are based on only two strains of MCMVs isolated from M. m. domesticus, Smith and K181, the latter derived from repeated passage of Smith in mouse submaxillary glands. The presence of MCMV in other members of the Mus subgenus had not even been investigated. By screening mouse samples collected in the European house mouse hybrid zone between M. m. domesticus and M. m. musculus, we show that MCMV is not restricted to the M. m. domesticus subspecies and that MCMVs likely codiverged with their Mus hosts. Thus, the diversity of MCMV in nature may be seriously underappreciated, since other members of the subgenus Mus likely carry their own MCMV lineages

    Species limits and phylogeographic structure in two genera of solitary African mole-rats Georychus and Heliophobius

    No full text
    African mole-rats (Bathyergidae) are an intensively studied family of subterranean rodents including three highly social and three solitary genera. Although their phylogenetic interrelations are clear, genetic diversity and the number of species within each genus is much less certain. Among the solitary genera, Heliophobius and Georychus were for a long time considered as monotypic, but molecular studies demonstrated strong phylogeographic structure within each genus and proposed that they represent complexes of cryptic species. The present study re-evaluates their internal genetic/phylogenetic structure using a combination of methodological approaches. We generated datasets of one mitochondrial and six specifically selected nuclear markers as well as of a large number of double digest restriction site associated (ddRAD) loci and then applied species delimitation analyses based on the multispecies coalescent model or clustering on co-ancestry matrices. The population structure was largely congruent across all analyses, but the methods differed in their resolution scale when determining distinct gene pools. While the multispecies coalescent model distinguished five Georychus and between eleven to thirteen Heliophobius gene pools in both Sanger sequenced and ddRAD loci, two clustering algorithms revealed significantly finer or coarser structure in ddRAD based co-ancestry matrices. Tens of clusters were distinguished by fineRADstructure and one (in Georychus) or two clusters (in Heliophobius) by Infomap. The divergence dating of the bathyergid phylogeny estimated that diversification within both genera coincided with the onset of the Pleistocene and was likely driven by repeated large-scale climatic changes. Based on this updated genetic evidence, we suggest recognizing one species of Georychus and two species of Heliophobius, corresponding to a northern and southern major lineage, separated by the Eastern Arc Mountains. Yet, the final taxonomic revision should await integrated evidence stemming from e.g. morphological, ecological, or behavioral datasets.The Czech Science Foundationhttp://www.elsevier.com/locate/ympev2022-10-29hj2022Mammal Research InstituteZoology and Entomolog

    Rapid spread of invasive genes into a threatened native species

    No full text
    When introduced or cultivated plants or animals hybridize with their native relatives, the spread of invasive genes into native populations might have biological, aesthetic, and legal implications. Models suggest that the rate of displacement of native by invasive alleles can be rapid and inevitable if they are favored by natural selection. We document the spread of a few introduced genes 90 km into a threatened native species (the California Tiger Salamander) in 60 years. Meanwhile, a majority of genetic markers (65 of 68) show little evidence of spread beyond the region where introductions occurred. Using computer simulations, we found that such a pattern is unlikely to emerge by chance among selectively neutral markers. Therefore, our results imply that natural selection has favored both the movement and fixation of these exceptional invasive alleles. The legal status of introgressed populations (native populations that are slightly genetically modified) is unresolved by the US Endangered Species Act. Our results illustrate that genetic and ecological factors need to be carefully weighed when considering different criteria for protection, because different rules could result in dramatically different geographic areas and numbers of individuals being protected
    corecore