58 research outputs found

    Impaired Representation of Time in Schizophrenia Is Linked to Positive Symptoms and Cognitive Demand

    Full text link
    Time processing critically relies on the mesencephalic dopamine system and striato-prefrontal projections and has thus been suggested to play a key role in schizophrenia. Previous studies have provided evidence for an acceleration of the internal clock in schizophrenia that may be linked to dopaminergic pathology. The present study aimed to assess the relationship between altered time processing in schizophrenia and symptom manifestation in 22 patients and 22 controls. Subjects were required to estimate the time needed for a visual stimulus to complete a horizontal movement towards a target position on trials of varying cognitive demand. It was hypothesized that patients – compared to controls – would be less accurate at estimating the movement time, and that this effect would be modulated by symptom manifestation and task difficulty. In line with the notion of an accelerated internal clock due to dopaminergic dysregulation, particularly patients with severe positive symptoms were expected to underestimate movement time. However, if altered time perception in schizophrenia was better explained in terms of cognitive deficits, patients with severe negative symptoms should be specifically impaired, while generally, task performance should correlate with measures of processing speed and cognitive flexibility. Patients underestimated movement time on more demanding trials, although there was no link to disease-related cognitive dysfunction. Task performance was modulated by symptom manifestation. Impaired estimation of movement time was significantly correlated with PANSS positive symptom scores, with higher positive symptom scores associated with stronger underestimation of movement time. The present data thus support the notion of a deficit in anticipatory and predictive mechanisms in schizophrenia that is modulated both by symptom manifestation and by cognitive demand

    Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness

    Get PDF
    Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals

    Altered Error Processing following Vascular Thalamic Damage: Evidence from an Antisaccade Task

    Get PDF
    Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response – the error-related negativity (ERN) - as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring. By relaying saccade-related efference copy signals, the thalamus appears to enable fast error processing. Furthermore early error processing based on internal information may contribute to error awareness which was reduced in the patients

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Analysis of the Milwaukee Parental Choice Program in Light of the First Amendment Establishment Clause Federal Supreme Court Cases

    No full text
    Setting the public education reform agenda in the United States has become a critical issue to Americans. The nation\u27s ability to maintain its position at the pinnacle of the industrialized world is predicated on the success of the country\u27s educational systems. The debate over reform initiatives has, in some instances, torn at the very fabric of principles upon which America was founded. There are those who equate true education reform with a new parental choice paradigm creating an open marketplace for parents to freely choose schools for their children, while others contend that such voucher programs are a facade for destruction of the common school . Americans agree that the public education system in the United States is in a state of crisis. The conundrum is how to fix it..

    Paw preferences in cats and dogs: Meta-analysis

    No full text
    Predator–prey relationships have been suggested to be one of the primary evolutionary factors driving the development of functional hemispheric asymmetries. However, lateralization in many predator species is not well understood and existing studies often are statistically underpowered due to small sample sizes and they moreover show conflicting results. Here, we statistically integrated findings on paw preferences in cats and dogs, two predator species within the Carnivora order that are commonly kept as pets in many societies around the globe. For both species, there were significantly more lateralized than non-lateralized animals. We found that 78% of cats and 68% of dogs showed either left- or right-sided paw preference. Unlike humans, neither dogs nor cats showed a rightward paw preference on the population level. For cats, but not dogs, we found a significant sex difference, with female animals having greater odds of being right-lateralized compared to male animals. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group
    corecore